scholarly journals Spore dispersal, diurnal pattern and viability of Monilinia spp. conidia and the relationship with weather components in an organic apple orchard

2015 ◽  
Vol 21 (3-4) ◽  
Author(s):  
F. Abonyi ◽  
A. Vámos ◽  
A. Rózsa ◽  
P. Lakatos ◽  
I. J. Holb

In a two-year Hungarian study, spore dispersal diurnal periodicity and viability of Monilinia spp. and their relation to weather components were determined in an organic apple orchard. Conidia of Monilinia spp. were first trapped in late May in both years. Low number of conidia were trapped until end-June. Thereafter, number of conidia continuously increased until harvest. Conidia in a 24-h period showed diurnal periodicity pattern, with th highest concentration in the afternoon hours. Spore viability with FDA staining showed that viability ofconidia ranged from 45 to 70% with showing lower viability in the dry than in the wet days in both years. Temperature and relative humidity correlated positively with mean hourly conidia numbers in both years. Mean hourly rainfall was negatively but poorly correlated with conidiacatches in both years. Results were compared and discussed with previous observations.

2014 ◽  
Vol 15 (5) ◽  
pp. 1999-2011 ◽  
Author(s):  
Gérémy Panthou ◽  
Alain Mailhot ◽  
Edward Laurence ◽  
Guillaume Talbot

Abstract Recent studies have examined the relationship between the intensity of extreme rainfall and temperature. Two main reasons justify this interest. First, the moisture-holding capacity of the atmosphere is governed by the Clausius–Clapeyron (CC) equation. Second, the temperature dependence of extreme-intensity rainfalls should follow a similar relationship assuming relative humidity remains constant and extreme rainfalls are driven by the actual water content of the atmosphere. The relationship between extreme rainfall intensity and air temperature (Pextr–Ta) was assessed by analyzing maximum daily rainfall intensities for durations ranging from 5 min to 12 h for more than 100 meteorological stations across Canada. Different factors that could influence this relationship have been analyzed. It appears that the duration and the climatic region have a strong influence on this relationship. For short durations, the Pextr–Ta relationship is close to the CC scaling for coastal regions while a super-CC scaling followed by an upper limit is observed for inland regions. As the duration increases, the slope of the relationship Pextr–Ta decreases for all regions. The shape of the Pextr–Ta curve is not sensitive to the percentile or season. Complementary analyses have been carried out to understand the departures from the expected Clausius–Clapeyron scaling. The relationship between dewpoint temperature and extreme rainfall intensity shows that the relative humidity is a limiting factor for inland regions, but not for coastal regions. Using hourly rainfall series, an event-based analysis is proposed in order to understand other deviations (super-CC, sub-CC, and monotonic decrease). The analyses suggest that the observed scaling is primarily due to the rainfall event dynamic.


2019 ◽  
Vol 25 (1) ◽  
Author(s):  
MASROOR ALI KHAN ◽  
KHALID AL GHAMDI ◽  
JAZEM A. MEHYOUB ◽  
RAKHSHAN KHAN

The focus of this study is to find the relationship between El Nino and dengue fever cases in the study area.Mosquito density was recorded with the help of light traps and through aspirators collection. Climate data were obtained from National Meteorology and Environment centre. (Year wise El Nino and La Nina data are according to NOAA & Golden Gate Weather Services). Statistical methods were used to establish the correlation coefficient between different factors. A high significant relationship was observed between Relative Humidity and Dengue fever cases, but Aedes abundance had no significant relationship with either Relative humidity and Temperature. Our conclusion is that the El Nino does not affect the dengue transmission and Aedes mosquito abundance in this region, which is supported by earlier works.


2021 ◽  
Vol 13 (2) ◽  
pp. 313
Author(s):  
Yongfang Xu ◽  
Zhaohui Lin ◽  
Chenglai Wu

Central Asia is prone to wildfires, but the relationship between wildfires and climatic factors in this area is still not clear. In this study, the spatiotemporal variation in wildfire activities across Central Asia during 1997–2016 in terms of the burned area (BA) was investigated with Global Fire Emission Database version 4s (GFED4s). The relationship between BA and climatic factors in the region was also analyzed. The results reveal that more than 90% of the BA across Central Asia is located in Kazakhstan. The peak BA occurs from June to September, and remarkable interannual variation in wildfire activities occurs in western central Kazakhstan (WCKZ). At the interannual scale, the BA is negatively correlated with precipitation (correlation coefficient r = −0.66), soil moisture (r = −0.68), and relative humidity (r = −0.65), while it is positively correlated with the frequency of hot days (r = 0.37) during the burning season (from June to September). Composite analysis suggests that the years in which the BA is higher are generally associated with positive geopotential height anomalies at 500 hPa over the WCKZ region, which lead to the strengthening of the downdraft at 500 hPa and the weakening of westerlies at 850 hPa over the region. The weakened westerlies suppress the transport of water vapor from the Atlantic Ocean to the WCKZ region, resulting in decreased precipitation, soil moisture, and relative humidity in the lower atmosphere over the WCKZ region; these conditions promote an increase in BA throughout the region. Moreover, the westerly circulation index is positively correlated (r = 0.53) with precipitation anomalies and negatively correlated (r = −0.37) with BA anomalies in the WCKZ region during the burning season, which further underscores that wildfires associated with atmospheric circulation systems are becoming an increasingly important component of the relationship between climate and wildfire.


Author(s):  
Joyce Imara Nchom ◽  
A. S. Abubakar ◽  
F. O. Arimoro ◽  
B. Y. Mohammed

This study examines the relationship between Meningitis and weather parameters (air temperature, maximum temperature, relative humidity, and rainfall) in Kaduna state, Nigeria on a weekly basis from 2007–2019. Meningitis data was acquired weekly from Nigeria Centre for Disease Control (NCDC), Bureau of Statistics and weather parameters were sourced from daily satellite data set National Oceanic and Atmospheric Administration (NOAA), International Research Institute for Climate and Society (IRI). The daily data were aggregated weekly to suit the study. The data were analysed using linear trend and Pearson correlation for relationship. The linear trend results revealed a weekly decline in Cerebro Spinal Meningitis (CSM), wind speed, maximum and air temperature and an increase in relative humidity and rainfall. Generally, results reveal that the most important explanatory weather variables influencing CSM amongst the five (5) are the weekly maximum temperature and air temperature with a positive correlation of 0.768 and 0.773. This study recommends that keen interest be placed on temperature as they play an essential role in the transmission of this disease and most times aggravate the patients' condition.


2020 ◽  
Author(s):  
Lei Qin ◽  
Qiang Sun ◽  
Jiani Shao ◽  
Yang Chen ◽  
Xiaomei Zhang ◽  
...  

Abstract Background: The effects of temperature and humidity on the epidemic growth of coronavirus disease 2019 (COVID-19)remains unclear.Methods: Daily scatter plots between the epidemic growth rate (GR) and average temperature (AT) or average relative humidity (ARH) were presented with curve fitting through the “loess” method. The heterogeneity across days and provinces were calculated to assess the necessity of using a longitudinal model. Fixed effect models with polynomial terms were developed to quantify the relationship between variations in the GR and AT or ARH.Results: An increased AT dramatically reduced the GR when the AT was lower than −5°C, the GR was moderately reduced when the AT ranged from −5°C to 15°C, and the GR increased when the AT exceeded 15°C. An increasedARH increased theGR when the ARH was lower than 72% and reduced theGR when the ARH exceeded 72%.Conclusions: High temperatures and low humidity may reduce the GR of the COVID-19 epidemic. The temperature and humidity curves were not linearly associated with the COVID-19 GR.


2020 ◽  
Vol 14 ◽  
pp. 175346662097740
Author(s):  
Dohun Kim ◽  
Sang-Yong Eom ◽  
Chang-Seob Shin ◽  
Yong-Dae Kim ◽  
Si-Wook Kim ◽  
...  

Background: The factors that trigger spontaneous pneumothorax have not been sufficiently evaluated. The purpose of this study is to analyze the relationship between the development of spontaneous pneumothorax and meteorological parameters, including air pollutants. Methods: This is a retrospective study using the medical records of 379 patients who were admitted for spontaneous pneumothorax (SP) over a period of 4 years. Meteorological and air pollution data were obtained from the National Meteorological Office and the Ministry of Environment. We employed a case-crossover design to evaluate the short-term association between SP and meteorological factors including air pollutants. Conditional logistic regression was used to analyze bi-directional matched data. Results: Increase of relative humidity (RH) and of carbon monoxide (CO) were associated with the risk of pneumothorax, with odds ratio (OR) for RH = 1.18 (1.02–1.36), CO = 1.23 (1.02–1.48). Moreover, as air pressure (AP) decreased, risk of pneumothorax increased, with OR = 1.30 (1.05–1.59) but others did not. In the stratified analysis, the effect of RH was positive in ex-smokers (OR = 3.31) and non-smokers (OR = 1.32), but negative in current smokers (OR = 0.72). The effect of AP was significant in younger patients (OR = 1.33), males (OR = 1.40), and non-smokers (OR = 1.36). CO was related only with non-smokers (OR = 1.35) Conclusion: The triggering factors for spontaneous pneumothorax were relative humidity, carbon monoxide, and air pressure. The effect of the trigger was prominent in patients who were younger (<45 years), non- or ex-smokers, and male. The reviews of this paper are available via the supplemental material section.


1963 ◽  
Vol 41 (4) ◽  
pp. 867-873 ◽  
Author(s):  
S. J. Webb

The action of several amino-hydroxy benzenes and pyrimidines on the survival of air-borne cells has been studied. It has been found that the —OH group is largely responsible for the protectiveness or toxicity of an added compound towards air-borne cells and that the activity of an —OH group can be severely modified by an —NH2 group as well as the ring nucleus on which it is placed. The relative humidity (R.H.) at which the aerosol is held determines the toxicity or protectiveness of a given compound and different chemical configurations in added chemicals appear to be necessary in order to preserve the viability of cells as R.H. is changed.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Adina-Eliza Croitoru ◽  
Gabriela Dogaru ◽  
Titus Cristian Man ◽  
Simona Mălăescu ◽  
Marieta Motricală ◽  
...  

The main objective of this study was to analyze the perception of the influence of various weather conditions on patients with rheumatic pathology. A group of 394 patients, aged between 39 and 87 years and diagnosed with degenerative rheumatic diseases, were interviewed individually by using a questionnaire created specifically for this study. Further on, to assess the relationship between pain intensity and weather conditions, a frequency analysis based on Pearson’s correlation matrix was employed. The most important results are as follows: the great majority of the participants (more than 75%) believe that their rheumatic pain is definitely or to a great extent influenced by different weather conditions; most of the patients reported intensification of their pain with weather worsening, especially when cloudiness and humidity suddenly increase (83.8% and 82.0%, respectively), air temperature suddenly decreases (81.5%), and in fog or rain conditions (81.2%). In our research, alongside simple meteorological variables, we established that complex weather variables such as atmospheric fronts, in particular, the cold ones and winter anticyclonic conditions, greatly intensify the rheumatic pain, whereas summer anticyclonic conditions usually lead to a decrease in pain severity. In terms of relationships between pain intensity and weather conditions, we found the strongest correlations (ranging between 0.725 and 0.830) when temperature, relative humidity, and cloudiness are constantly high.


2003 ◽  
Vol 63 (4) ◽  
pp. 589-598 ◽  
Author(s):  
R. S. Medeiros ◽  
F. S. Ramalho ◽  
J. C. Zanuncio ◽  
J. E. Serrão

The objective of this work was to evaluate which nonlinear model [Davidson (1942, 1944), Stinner et al. (1974), Sharpe & DeMichele (1977), and Lactin et al. (1995)] best describes the relationship between developmental rates of the different instars and stages of Alabama argillacea (Hübner) (Lepidoptera: Noctuidae), and temperature. A. argillacea larvae were fed with cotton leaves (Gossypium hirsutum L., race latifolium Hutch., cultivar CNPA 7H) at constant temperatures of 20, 23, 25, 28, 30, 33, and 35ºC; relative humidity of 60 ± 10%; and photoperiod of 14:10 L:D. Low R² values obtained with Davidson (0.0001 to 0.1179) and Stinner et al. (0.0099 to 0.8296) models indicated a poor fit of their data for A. argillacea. However, high R² values of Sharpe & DeMichele (0.9677 to 0.9997) and Lactin et al. (0.9684 to 0.9997) models indicated a better fit for estimating A. argillacea development.


Sign in / Sign up

Export Citation Format

Share Document