Evaluation of Surface Roughness and Cutting Forces During Precision Turning

2012 ◽  
Vol 622-623 ◽  
pp. 390-393 ◽  
Author(s):  
R. Vinayagamoorthy ◽  
M. Anthony Xavior

The Ti-6Al-4V titanium alloy is commonly used in aerospace, automotive industries and for manufacturing of medical implants, due to its biocompatibility. The objective of this work is to investigate the performance of precision turning using conventional lathe on Ti6Al4V under dry working conditions. A range of parameters that involve the machining processes were recognized and a consensus was reached to finalize its values. The proposed work is to carry out machining under the selected levels of parameters to evaluate the cutting force and surface roughness generated as the consequence of the machining process. Cutting speed, feed rate, depth of cut and nose radiuses are considered as the machining parameters for experimentation. The variation in the surface roughness and the cutting force for the variation of each machining parameters are presented graphically.

2012 ◽  
Vol 710 ◽  
pp. 338-343 ◽  
Author(s):  
K. Jayakumar ◽  
Jose Mathew ◽  
M.A. Joseph ◽  
R. Suresh Kumar ◽  
P. Chakravarthy

Machining process such as milling receives less attention in the study of machinability of composites due to its interrupted cutting and the complexity of the process. In the present study, A356 aluminium alloy powder reinforced with 10 volume % SiC particles of various sizes (1,12.5 and 25 µm) were synthesized by vacuum hot pressing method and the effect of particle size on the composites were analysed for its mechanical properties and machinability. End milling of these composites were carried out and the surface roughness and resultant cutting force were analysed with the change of machining parameters and varying SiC particle sizes. The minimum cutting force and surface roughness were obtained for a finer particle (1 µm) reinforced composite with higher cutting speed, low feed and depth of cut.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


2019 ◽  
Vol 26 (4) ◽  
pp. 179-184
Author(s):  
Justyna Molenda

AbstractNowadays lot of scientific work inspired by industry companies was done with the aim to avoid the use of cutting fluids in machining operations. The reasons were ecological and human health problems caused by the cutting fluid. The most logical solution, which can be taken to eliminate all of the problems associated with the use of cooling lubricant, is dry machining. In most cases, however, a machining operation without lubricant finds acceptance only when it is possible to guarantee that the part quality and machining times achieved in wet machining are equalled or surpassed. Surface finish has become an important indicator of quality and precision in manufacturing processes and it is considered as one of the most important parameter in industry. Today the quality of surface finish is a significant requirement for many workpieces. Thus, the choice of optimized cutting parameters is very important for controlling the required surface quality. In the present study, the influence of different machining parameters on surface roughness has been analysed. Experiments were conducted for turning, as it is the most frequently used machining process in machine industry. All these parameters have been studied in terms of depth of cut (ap), feed rate (f) and cutting speed (vc). As workpiece, material steel S235 has been selected. This work presents results of research done during turning realised on conventional lathe CDS 6250 BX-1000 with severe parameters. These demonstrate the necessity of further, more detailed research on turning process results.


2017 ◽  
Vol 18 (1) ◽  
pp. 147-154
Author(s):  
Mohammad Yeakub Ali ◽  
Wan Norsyazila Jailani ◽  
Mohamed Rahman ◽  
Muhammad Hasibul Hasan ◽  
Asfana Banu

Cutting fluid plays an important role in machining processes to achieve dimensional accuracy in reducing tool wear and improving the tool life. Conventional flood cooling method in machining processes is not cost effective and consumption of huge amount of cutting fluids is not healthy and environmental friendly. In micromachining, flood cooling is not recommended to avoid possible damage of the microstructures. Therefore, one of the alternatives to overcome the environmental issues to use minimum quantity of lubrication (MQL) in machining process. MQL is eco-friendly and has economical advantage on manufacturing cost. However, there observed lack of study on MQL in improving machined surface roughness in micromilling. Study of the effects of MQL on surface roughness should be carried out because surface roughness is one of the important issues in micromachined parts such as microfluidic channels. This paper investigates and compares surface roughness with the presence of MQL and dry cutting in micromilling of aluminium alloy 1100 using DT-110 milling machine. The relationship among depth of cut, feed rate, and spindle speed on surface roughness is also analyzed. All three machining parameters identified as significant for surface roughness with dry cutting which are depth of cut, feed rate, and spindle speed. For surface roughness with MQL, it is found that spindle speed did not give much influence on surface roughness. The presence of MQL provides a better surface roughness by decreasing the friction between tool and workpiece.


2014 ◽  
Vol 699 ◽  
pp. 198-203 ◽  
Author(s):  
Raja Izamshah Raja Abdullah ◽  
Aaron Yu Long ◽  
Md Ali Mohd Amran ◽  
Mohd Shahir Kasim ◽  
Abu Bakar Mohd Hadzley ◽  
...  

Polyetheretherketones (PEEK) has been widely used as biomaterial for trauma, orthopaedic and spinal implants. Component made from Polyetheretherketones generally required additional machining process for finishing which can be a problem especially to attain a good surface roughness and dimensional precision. This research attempts to optimize the machining and processing parameters (cutting speed, feed rate and depth of cut) for effectively machining Polyetheretherketones (PEEK) implant material using carbide cutting tools. Response Surface Methodology (RSM) technique was used to assess the effects of the parameters and their relations towards the surface roughness values. Based on the analysis results, the optimal machining parameters for the minimum surface roughness values were by using cutting speed of 5754 rpm, feed rate of 0.026 mm/tooth and 5.11 mm depth of cut (DOC).


Author(s):  
Saeid Amini ◽  
Mohammad Baraheni ◽  
Mohammad Khaki

Turn-milling process has been paid attention in order to be used in multi-task machining processes. Moreover, looking for new machining techniques aimed at reducing cutting force is of important. Reducing cutting force in machining processes has the benefits of extending tool life and improving surface quality. One of the new concepts for reducing the cutting force is applying ultrasonic vibration. In this paper, effects of ultrasonic vibration under different machining parameters in turn-milling process of Al-7075 alloy will be investigated. In this order, a special mechanism was designed to apply ultrasonic vibration during machining process. Ultrasonic vibration exertion on the tool reduced cutting force and surface roughness up to 75% and 35%, respectively. Also tool rotational speed increment induced cutting force and surface roughness increment. In addition, tool feed rate and workpiece rotational speed increment caused cutting force and surface roughness increment. Although, feed rate was more influential.


This project was done to learn the effects of cutting parameters on cutting force and roughness (surface roughnes) of AZ31 magnesium (Mg) alloy. Machining parameters involved in this project are cutting speed, feed rate, and lubrication methods. Deckel Maho DMU 50 eVolution high speed milling machine was using and uncoated carbide button insert was used as the cutting tool. Cutting force was measured during the milling process and roughness was measured after that and cleaning process to ensure no interference that would conflicted the results. The best machining parameters identified when feed rate at 0.05 mm per tooth, cutting speed are at 600 m per min, and minimum quantity lubrication was applied during the machining process. From analysis of variance (ANOVA) table generated by Minitab software, this project can conclude that feed rate, cutting speed, and lubrication methods are significant to cutting force and roughness when machining AZ31 Mg Alloy Therefore, the relationship of surface roughness and cutting force should be taken as a major key point in machining processes. In the automotive field, magnesium was used to fabricate an engine that place at front body due to reduce the weight of vehicle. This design can increase performance and balancing of weight [1].


2012 ◽  
Vol 9 (1) ◽  
pp. 37 ◽  
Author(s):  
LB Abhang ◽  
M Hameedullah

 Due to the widespread use of highly automated machine tools in the metal cutting industry, manufacturing requires highly reliable models and methods for the prediction of output performance in the machining process. The prediction of optimal manufacturing conditions for good surface finish and dimensional accuracy plays a very important role in process planning. In the steel turning process the tool geometry and cutting conditions determine the time and cost of production which ultimately affect the quality of the final product. In the present work, experimental investigations have been conducted to determine the effect of the tool geometry (effective tool nose radius) and metal cutting conditions (cutting speed, feed rate and depth of cut) on surface finish during the turning of EN-31 steel. First and second order mathematical models are developed in terms of machining parameters by using the response surface methodology on the basis of the experimental results. The surface roughness prediction model has been optimized to obtain the surface roughness values by using LINGO solver programs. LINGO is a mathematical modeling language which is used in linear and nonlinear optimization to formulate large problems concisely, solve them, and analyze the solution in engineering sciences, operation research etc. The LINGO solver program is global optimization software. It gives minimum values of surface roughness and their respective optimal conditions. 


Author(s):  
Kosaraju Satyanarayana ◽  
Anne Venu Gopal ◽  
Popuri Bangaru Babu

The problem of machining titanium is one of the ever-increasing magnitudes due to its low thermal conductivity and work-hardening characteristic. In the present work, experimental studies have been carried out to obtain the optimum conditions for machining titanium alloy. The effect of machining parameters such as speed, feed, depth of cut and back rake angle on cutting force, and surface roughness were investigated. The significance of these parameters, on cutting force and surface roughness, has been established using the analysis of variance. The degree of influence of each process parameter on individual performance characteristic was analyzed from the experimental results obtained using the grey relational grade matrix. The back rake angle was identified as the most influential process parameter on cutting force and surface roughness. The cutting speed is identified as the most significant parameter for the turning operation according to the weighted sum grade of the cutting force and surface roughness.


2012 ◽  
Vol 622-623 ◽  
pp. 399-403 ◽  
Author(s):  
Tarun Thomas George ◽  
J. Venugopal ◽  
M. Anthony Xavior ◽  
R. Vinayagamoorthy

The quality of a machined surface is becoming more and more important to satisfy the increasing demands of sophisticated component performance, longevity, and reliability. The objective of this paper is to analyze the performance of precision turning using conventional lathe on Ti6Al4V under dry working conditions. Various parameters that affect the machining processes were identified and a consensus was reached regarding its values. The proposed work is to perform machining under the selected levels of conditions and parameters and to estimate the, cutting temperature and surface roughness generated as the result of the machining process. ANOVA is used to find the percentage contribution of each parameter to the surface roughness and cutting temperature.


Sign in / Sign up

Export Citation Format

Share Document