scholarly journals A DIFFERENT APPROACH IN OPTIMUM DESIGN PROCESS AND FEA VALIDATION OF LOW-SPEED MULTI-PHASE IPMSMS

2017 ◽  
Vol 18 (1) ◽  
pp. 133-145
Author(s):  
Seyed Asghar Gholamian ◽  
Hamid Reza Gholinejad

Magnets placement effects on permanent magnet motors performance, because of its different magnetic flux density distribution. Therefore, different types of magnet placement should be examined experimentally or by valid simulations. In this paper, first, an interior permanent magnet synchronous motor (IPMSM) called spoke type with specifications related to the propulsion of ships is designed and then optimized by ant colony algorithm to increase the torque-to-volume ratio. The design procedure and its formulas presented as simple as possible. Then, to verify the optimization results of the optimized motor, a Two-dimensional finite element analysis (FEA) is done. Also in this analyze the core and the slot saturation was studied.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1736
Author(s):  
In-Jun Yang ◽  
Si-Woo Song ◽  
Dong-Ho Kim ◽  
Kwang-Soo Kim ◽  
Won-Ho Kim

In an interior permanent magnet synchronous motor, an adhesive such as bond is generally injected into the magnet tolerance to prevent vibration of the permanent magnet within the insertion space. In this case, a disadvantage is that the magnet tolerance does not contribute to the performance. In this paper, ferrofluid is inserted to improve the torque density, utilizing the magnet tolerance. When inserting ferrofluid into the magnet tolerance, it is important to fix the magnet because conventional adhesives are not used, and it is important that the ferrofluid does not act as a leakage path within the insertion space. In this study, a new rotor configuration using a plastic barrier that satisfies these considerations was introduced. The analysis was conducted through finite element analysis (FEA), and this technique was verified by comparing the simulation results and the experimental results through a dynamo test. It was confirmed that the no-load back electromotive force in the final model increased through ferrofluid injection.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3887
Author(s):  
Jeong ◽  
Lee ◽  
Hur

This paper presents a mitigation method of slot harmonic cogging torque considering unevenly magnetized magnets in a permanent magnet synchronous motor. In previous studies, it has been confirmed that non-uniformly magnetized permanent magnets cause an unexpected increase of cogging torque because of additional slot harmonic components. However, these studies did not offer a countermeasure against it. First, in this study, the relationship between the residual magnetic flux density of the permanent magnet and the cogging torque is derived from the basic form of the Maxwell stress tensor equation. Second, the principle of the slot harmonic cogging torque generation is explained qualitatively, and the mitigation method of the slot harmonic component is proposed. Finally, the proposed method is verified with the finite element analysis and experimental results.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2122
Author(s):  
Adrian Mlot ◽  
Juan González

Implementation of a new design for the process of assembling an axial-flux permanent magnet synchronous motor (AF PMSM) may lead to unstable motor parameters during operation at low and high speeds. In this paper, experimental data related to the AFPMSM used in an electric traction motor was monitored. The paper presents tracing of machine performance in order to find quality-related issues and to evaluate the assembly process. To assess the manual manufacturing process (low-volume production) and electrical machine performance, several motors, characterized by the same size and topology, were extensively tested. Useful AF PMSM parameters such as continuous torque and continuous current were measured. The winding temperature of the stators was also monitored and carefully examined. An attempt to assess motor performance, based on measurements and aimed at the identification of the weakest parts of the electric motor design is presented. In this paper it can be seen how the subcomponents of the machine and its detailed assembly process and tolerances play key roles in achievement of the designed continuous performance with symmetrical temperature distribution in the stator winding. Selected conclusions drawn from the obtained measurements were explained by a rotor/stator misalignment study using 3-D finite element analysis.


2012 ◽  
Vol 516-517 ◽  
pp. 1742-1745
Author(s):  
Yan Li ◽  
Zeng Jie Zhang ◽  
Jia Kuan Xia ◽  
Gui Hong Feng

Electromagnetic vibration is produced by radical exciting force waves acting on iron cores of permanent magnet motors. In order to reduce radial electromagnetic force, a surface mounted permanent magnet synchronous motor was analyzed. According to the electromagnetic force wave of analytical formula in the case of no-load, the main force wave order and force wave frequency were analyzed. Properly selecting the pole arc coefficient could reduce the amplitude of electromagnetic force. By finite element analysis, the results show that reduce the sinusoidal distortion rate of the flux density, electromagnetic vibration of the motor can be reduced to some extent, but not the best choice.


Author(s):  
Ahlam Luaibi Shuraiji ◽  
Buraq Abdulhadi Awad

<p><span lang="EN-US">Interior permanent magnet motors (IPMMs) have been increasing in popularity, since the emergence of permanent magnet material with high energy products, i.e. rare earth permanent magnet material. This paper analyses the performances of IPMMs having different rotor iron pole shapes including eccentric, sinusoidal and sinusoidal with 3th order harmonic injected rotor pole arc shapes IPMMs. Cogging torque, static torque, torque ripple, torque-speed and power-speed curves of the mentioned motors have been compared. It must be noted that the mentioned motors have been designed with the same stator, PM shape and the same dimensions, in order to highlight the effect of the rotor pole arc shape on the performance of the such motors. Two-dimensional (2D) finite element analysis (FEA) has been utilized to design and analyze the mentioned machines. It has been found that rotor iron pole shape of the IPM has notably influence on the machine performance, practically on output electromagnetic torque and its ripple. The highest value of average electromagnetic torque as well as torque capability in the constant torque reign is delivered by 3th order harmonic injected rotor pole arc shapes machine, while the lowest torque ripple is obtained by the sinusoidal rotor pole arc machine.</span></p>


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2240
Author(s):  
Sajjad Ahmadi ◽  
Thierry Lubin ◽  
Abolfazl Vahedi ◽  
Nasser Taghavi

This paper presents a multi-objective optimal rotor design for an interior permanent magnet synchronous motor (IPMSM) based on finite element analysis. Due to the importance of torque characteristic in electromagnetic design of IPMSMs, the main efforts of this study are focused on finding a proper trade-off for its torque profile challenges. In this regard, in order to attain high average torque and low torque ripple, the influence of several key factors, such as the permanent magnet (PM) arrangements, PM positions and PM sizes, are examined. Subsequently, according to the outcomes of the performed sensitivity analysis, the appropriate variation interval of the parameters as well as their initial values is determined. Employing such a deterministic optimization algorithm, which does not need large sample points, minimizes the finite element computational cost and leads to accelerate the convergence process. The two-dimensional finite element model (FEM) of an IPMSM is used to perform a sensitivity analysis and establish a multi-objective FEM-based optimization.


Author(s):  
Ho-Joon Lee Et.al

Approximately 2.5 billion won can be saved every year by replacing existing induction motors, which are traction motors for urban railway vehicles, with permanent magnet motors. This paper presents a study on the structural design of a completely enclosed motor to commercialize an interior permanent-magnet synchronous motor (IPMSM) for the traction of urban railway vehicles. The proposed solution provides protection from an inflow of dust and magnetic powder into the rotor that can deteriorate the motor performance and cause burnout. In addition, unless it is a water-cooled or oil-cooled structure, cooling of an electric motor used in medium and large-sized equipment is not easily accomplished. However, completely enclosed motors are vulnerable to overheating; therefore, research into housing design is required to provide cooling. Additionally, the permissible current density through the stator winding must be considered in the design to prevent the occurrence of thermal demagnetization of permanent magnets. Furthermore, IPMSMs require a separate driver for operation and speed controls for a wide range of operating conditions such as rail traction. Thus, a study has been conducted on IPMSMs and other related driver and control technologies, and their suitability has been validated through performance tests.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Shilun Ma ◽  
Xueyi Zhang ◽  
Qinjun Du ◽  
Liwei Shi ◽  
Xiangyu Meng

Aiming at the disadvantages of large leakage flux and low magnetic flux density of radial magnetic circuit and tangential magnetic circuit, a new type of permanent magnet (PM) rotor with parallel tangential and radial magnetic circuits is proposed. Based on Ohm’s law and Kirchhoff’s law of magnetic circuits, equivalent magnetic circuits for rotor poles are developed. The structure parameters of the generator are preliminarily determined. At the same time, by means of the Taguchi method and employing finite element analysis, the rotor poles of generator are optimized to improve air gap magnetic density, the cogging torque, and the distortion of back-EMF waveform. Finally, the validity of proposed design methods is validated by the analytical and experimental results.


Author(s):  
S. Raj ◽  
R. Aziz ◽  
M.Z. Ahmad

<span>This paper present the influence of pole number on the characteristics of permanent magnet synchronous motor (PMSM). This study is devoted to construct three different motors with varying pole numbers and investigating its effect on the characteristics of permanent magnet synchronous motor (PMSM). It is a study on an influence of pole numbers on electromagnetic and thermal characteristics of the PMSMs all while maintaining the same motor dimensions, parameters and slot number. The study is conducted to analyse the best slot-pole combination for a given dimension to determine if pole numbers have a role in the motor performance. The analysis for these permanent magnet motors is done via finite element analysis (FEA) in which JMAG Designer software is used. The software is used to analyse the motor performance in terms of cogging torque, speed, power, iron loss, copper loss as well as the efficiency of the motor itself. All three motors were simulated in no load and load condition.</span>


Sign in / Sign up

Export Citation Format

Share Document