scholarly journals Performances analysis of interior permanent magnet motors having different rotor iron pole shapes

Author(s):  
Ahlam Luaibi Shuraiji ◽  
Buraq Abdulhadi Awad

<p><span lang="EN-US">Interior permanent magnet motors (IPMMs) have been increasing in popularity, since the emergence of permanent magnet material with high energy products, i.e. rare earth permanent magnet material. This paper analyses the performances of IPMMs having different rotor iron pole shapes including eccentric, sinusoidal and sinusoidal with 3th order harmonic injected rotor pole arc shapes IPMMs. Cogging torque, static torque, torque ripple, torque-speed and power-speed curves of the mentioned motors have been compared. It must be noted that the mentioned motors have been designed with the same stator, PM shape and the same dimensions, in order to highlight the effect of the rotor pole arc shape on the performance of the such motors. Two-dimensional (2D) finite element analysis (FEA) has been utilized to design and analyze the mentioned machines. It has been found that rotor iron pole shape of the IPM has notably influence on the machine performance, practically on output electromagnetic torque and its ripple. The highest value of average electromagnetic torque as well as torque capability in the constant torque reign is delivered by 3th order harmonic injected rotor pole arc shapes machine, while the lowest torque ripple is obtained by the sinusoidal rotor pole arc machine.</span></p>

Author(s):  
Zhipeng Wu ◽  
Shuguang Zuo ◽  
Shenglong Hu ◽  
Xiaorui Hu ◽  
Siyue Chen ◽  
...  

Interior permanent magnet synchronous motors (IPMSMs) have been widely used as drive machines in electric vehicles (EVs) due to their high torque density. However, the torque ripple of IPMSMs will result in severe noise and vibration. This paper proposes a new analytical method for electromagnetic torque prediction and harmonic reduction of IPMSM. On the basis of dq theory, an analytical model of electromagnetic torque is firstly established by taking the permanent magnet flux harmonics and the cross-coupling effect into consideration. And the specific sources and orders of torque harmonics are also determined. Then, the torque-angle characteristics are further studied. In particular, the permanent magnet (PM) torque and the reluctance torque are separated and quantitatively analyzed via the proposed analytical model. Finally, a theoretical method of reducing the specific order torque harmonic by PM shifting is derived and proposed from the perspective of avoiding resonance. The accuracy and effectiveness of the proposed analytical method are verified by finite-element analysis. The results show that the proposed analytical model is accurate enough to predict the electromagnetic torque performance of IPMSM. Moreover, the electromagnetic torque harmonics with specific orders can be effectively reduced by shifting the PM to an appropriate angle.


Author(s):  
Dinh Hai Linh

In this paper, a type interior permanent magnet synchronous motor designs is proposed for sport scooter application to improve constant torque wide speed performance. Interior Permanent Magnet machines are widely used in automotive applications for their wide-speed range operation and low maintenance cost. An existing permanent magnet motor (commercial QS Motor) is 3 kW-3000 rpm. In order to improve torque and power in wide speed range, a IPM electric motor 5.5 kW -5000 rpm can run up to 100 km/h: An Step-Skewing Interior Permanent Magnet motor alternatives is designed and optimized in detail with optimal magnetic segment V shape. The electromagnetic charateristics of Interior Permanent Magnet motors with V shape are compared with the reference Surface Permanent Magnet motor for the same geometry parameter requirements. Detailed loss and efficiency result is also analyzed at rate and maximum speeds. A prototype motor is manufactured, and initial experimental tests are performed. Detailed comparison between Finite Element Analysis and test data are also presented. It is shown that it is possible to have an optimized Interior Permanent Magnet motor for such high-speed traction application. This paper will figure out optimal angle of magnetic V shape for maximum torque and minimum torque ripple.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3053 ◽  
Author(s):  
Myeong-Hwan Hwang ◽  
Hae-Sol Lee ◽  
Hyun-Rok Cha

Drive motors, which are used in the drive modules of electric cars, are interior permanent magnet motors. These motors tend to have high cogging torque and torque ripple, which leads to the generation of high vibration and noise. Several studies have attempted to determine methods of reducing the cogging torque and torque ripple in interior permanent magnet motors. The primary methods of reducing the cogging torque involve either electric control or mechanical means. Herein, the authors focused on a mechanical method to reduce the cogging torque and torque ripple. Although various methods of reducing vibration and noise mechanically exist, there is no widely-known comparative analyses on reducing the vibration and noise by designing a notched rotor shape. Therefore, this paper proposes a method of reducing vibration and noise mechanically by designing a notched rotor shape. In the comparative analysis performed herein, the motor stator and rotor were set to be the same size, and electromagnetic field analysis was performed to determine a notch shape that is suitable for the rotor and that generates reasonable vibration and noise.


2017 ◽  
Vol 18 (1) ◽  
pp. 133-145
Author(s):  
Seyed Asghar Gholamian ◽  
Hamid Reza Gholinejad

Magnets placement effects on permanent magnet motors performance, because of its different magnetic flux density distribution. Therefore, different types of magnet placement should be examined experimentally or by valid simulations. In this paper, first, an interior permanent magnet synchronous motor (IPMSM) called spoke type with specifications related to the propulsion of ships is designed and then optimized by ant colony algorithm to increase the torque-to-volume ratio. The design procedure and its formulas presented as simple as possible. Then, to verify the optimization results of the optimized motor, a Two-dimensional finite element analysis (FEA) is done. Also in this analyze the core and the slot saturation was studied.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 641 ◽  
Author(s):  
Ya Li ◽  
Hui Yang ◽  
Heyun Lin ◽  
Shuhua Fang ◽  
Weijia Wang

This paper proposes a novel magnet-axis-shifted hybrid permanent magnet (MAS-HPM) machine, which features an asymmetrical magnet arrangement, i.e., low-cost ferrite and high-performance NdFeB magnets, are placed in the two sides of a “▽”-shaped rotor pole. The proposed magnet-axis-shift (MAS) effect can effectively reduce the difference between the optimum current angles for maximizing permanent magnet (PM) and reluctance torques, and hence the torque capability of the machine can be further improved. The topology and operating principle of the proposed MAS-HPM machine are introduced and are compared with the BMW i3 interior permanent magnet (IPM) machine as a benchmark. The electromagnetic characteristics of the two machines are investigated and compared by finite element analysis (FEA), which confirms the effectiveness of the proposed MAS design concept for torque improvement.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2240
Author(s):  
Sajjad Ahmadi ◽  
Thierry Lubin ◽  
Abolfazl Vahedi ◽  
Nasser Taghavi

This paper presents a multi-objective optimal rotor design for an interior permanent magnet synchronous motor (IPMSM) based on finite element analysis. Due to the importance of torque characteristic in electromagnetic design of IPMSMs, the main efforts of this study are focused on finding a proper trade-off for its torque profile challenges. In this regard, in order to attain high average torque and low torque ripple, the influence of several key factors, such as the permanent magnet (PM) arrangements, PM positions and PM sizes, are examined. Subsequently, according to the outcomes of the performed sensitivity analysis, the appropriate variation interval of the parameters as well as their initial values is determined. Employing such a deterministic optimization algorithm, which does not need large sample points, minimizes the finite element computational cost and leads to accelerate the convergence process. The two-dimensional finite element model (FEM) of an IPMSM is used to perform a sensitivity analysis and establish a multi-objective FEM-based optimization.


Sign in / Sign up

Export Citation Format

Share Document