scholarly journals Expression of Nematode Resistance in Plant Introductions of Arachis hypogaea

2000 ◽  
Vol 27 (2) ◽  
pp. 78-82 ◽  
Author(s):  
P. Timper ◽  
C. C. Holbrook ◽  
H. Q. Xue

Abstract The peanut root-knot nematode (Meloidogyne arenaria, race 1) is a world-wide pest of peanut (Arachis hypogaea L.). Several moderately resistant genotypes have been identified in the cultivated peanut species. Our objective was to determine the expression of resistance for six of these genotypes. We examined four potential expressions of resistance—(a) fewer second-stage juveniles (J2) penetrate the roots, (b) fewer J2 establish functional feeding sites, (c) slower maturation, and (d) reduced fecundity (eggs per female). Seedlings of the susceptible cultivar Florunner and the resistant genotypes were inoculated with J2 of M. arenaria, and transplanted 3 d later to synchronize nematode development. Penetration was assessed at 3 and 10 d; development at 10 (or 12), 17, 22, and 27 d; and fecundity at 60 d after inoculation. The experiments were conducted in a greenhouse or growth chamber. The number of J2 within the roots was similar in resistant and susceptible peanut after 3 d; however, numbers were lower in two of the resistant genotypes than in Florunner after 10 d. A greater percentage of J2 failed to develop in all of the resistant genotypes (72 to 79%) than in Florunner (50%) after 17 d. Of the J2 that did begin to develop, the rate of maturation and fecundity was similar in resistant and susceptible genotypes. A lack of development indicates that the J2 failed to establish a feeding site. Therefore, the primary expression of resistance in the six peanut genotypes appears to be a reduction in the percentage of J2 that establish a functional feeding site. The decline in J2 after infection may be related to the failure to establish a feeding site.

2016 ◽  
Vol 43 (1) ◽  
pp. 49-51 ◽  
Author(s):  
W.D. Branch ◽  
T.B. Brenneman ◽  
J.P. Noe

ABSTRACT Root-knot nematode (RKN), [Meloidogyne arenaria (Neal) Chitwood race 1] can result in highly significant yield losses in peanut (Arachis hypogaea L.) production. Fortunately, very high levels of RKN nematode resistance have been identified and incorporated from wild species into newly developed peanut cultivars. In 2011-12 at Tifton, GA, a field site was artificially inoculated with M. arenaria race 1. A susceptible cultivar was used to uniformly increase the peanut-specific race 1 nematode population during the summer and fall; whereas, hairy vetch (Vicia villosa Roth) was used for the same purpose each winter as a susceptible cover crop. During 2013 and 2014, space-planted F2 and F3 populations from cross combinations involving A. hypogaea susceptible × resistant parental lines derived from ‘COAN’ were evaluated, respectively. Several past inheritance studies had suggested a single dominant gene, Rma, controlled the resistance. However in this study, the occurrence of a second recessive gene (rma2) was also found to be involved in very high peanut RKN resistance. Inheritance data fit a 13:3 genetic model and confirmed an earlier report for two RKN-resistance genes (Rma1 and rma2) found in TxAG-6 and now COAN.


2001 ◽  
Vol 28 (2) ◽  
pp. 80-84 ◽  
Author(s):  
C. C. Holbrook ◽  
T. G. Isleib

Abstract The U.S. maintains a large (> 8000 accessions) and genetically diverse collection of peanut (Arachis hypogaea L.) germplasm. It is costly to screen all accessions within this collection for traits that could be useful in cultivar development. The objective of this research was to identify countries of origin that are rich sources of resistance to important peanut diseases. This would allow peanut breeders to focus their efforts on smaller subsets of the germplasm collection. Accessions in the peanut core collection were evaluated for resistance to late (Cercosporidium personatum Berk. & M. A. Curtis) and early (Cercospora arachidicola Hori) leaf spot, tomato spotted wilt Tospovirus (TSWV), the peanut root-knot nematode [Meloidogyne arenaria (Neal) Chitwood race 1], and Cylindrocladium black rot (CBR)[Cylindrocladium crotalarie (Loos) Bell & Sobers]. These data then were examined to determine if genes for resistance clustered geographically. Several geographical areas that appear to be rich sources for disease-resistant genes were identified. China had a relatively large number of accessions with resistance to the peanut root-knot nematode. Peru appeared to be a rich source of material with resistance to CBR. Resistance to late leaf spot was more frequent than expected in accessions from Bolivia and Ecuador. Bolivia was also a valuable source of resistance to early leaf spot. Early leaf spot resistance also was more prevalent than expected in accessions from India, Nigeria, and Sudan. India, Israel, and Sudan were valuable origins for material with resistance to TSWV. Accessions with multiple disease resistance were most common in India, Mozambique, and Senegal. This information should enable plant breeders to utilize more efficiently the genes for disease resistance that are available in the U.S. germplasm collection.


2014 ◽  
Vol 41 (2) ◽  
pp. 85-89 ◽  
Author(s):  
W. D. Branch ◽  
T. B. Brenneman ◽  
G. Hookstra

ABSTRACT A common set of 12 advanced Georgia peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) breeding lines that were derived from ‘COAN’ cross combinations were compared with three check cultivars for root-knot nematode (RKN) [Meloidogyne arenaria (Neal) Chitwood race 1] resistance. These 15 genotypes were grown in RKN populated field tests using a randomized complete block design with three replications for two years (2011 and 2012). Two molecular markers (SCAR 197/909 and SSR-GM565) used for marker assisted selection (MAS) did not agree with low gall ratings and high pod yield for four out of the 15 genotypes (26.7%). The results were the same each year with the same four field RKN-resistant genotypes being incorrectly identified as susceptible (false negatives) by both markers. Reciprocal cross combinations involving field resistant parents showed one-gene difference between MAS resistant × MAS susceptible in F1 and F2 populations. The lack of accuracy differentiating resistant RKN breeding lines when using these two markers was attributed to either recombination between the resistant gene RMA and these two markers, or the possible identification of a second unlinked nematode resistant gene. Regardless, more tightly-linked molecular markers are needed for RKN-resistance in future MAS breeding programs.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 520A-520
Author(s):  
J. A. Thies ◽  
A. Levi

Root-knot nematodes (Meloidogyne incognita, M. arenaria, and M. javanica) cause severe damage to watermelon and resistance has not been identified in any watermelon cultivar. In greenhouse tests, we evaluated 265 U.S. plant introductions (PIs) for nematode resistance (based on root galling and nematode reproduction), and identified 22 PIs of Citrullus lanatus var. citroides as moderately resistant to M. arenaria race 1. In subsequent tests, these 22 PIs exhibited low to moderate resistance to M. incognita race 3 and M. arenaria race 2. Three watermelon (C. lanatus var. lanatus) cultivars (Charleston Gray, Crimson Sweet, and Dixie Lee), three C. colocynthis PIs, and four C. lanatus var. citroides PIs, all previously shown to be susceptible to M. arenaria race 1, were susceptible to M. incognita race 3 and M. arenaria race 2. The C. lanatus var. citroides PIs that are most resistant to both M. incognita and M. arenaria should be useful sources of resistance for developing root-knot nematode resistant watermelon cultivars.


2021 ◽  
Vol 15 (2) ◽  
pp. 695-706
Author(s):  
R. Bernard Sawadogo ◽  
K. Marie-Laure Guissou ◽  
M. Bertin Zagre ◽  
S. Nankone ◽  
Philippe Sankara

Peanut (Arachis hypogaea L.) is a worldwide popular oilseed. In Burkina Faso, production fluctuates from year to year. This fluctuation in yield is linked to the biotic factors which constitute the major constraints of peanuts. To this end, many breeding programs have been set up to select disease-resistant varieties to improve yields. It is with this in mind that this work focused a genetic analysis of traits related to leaf spot resistance of groundnuts. This study was to evaluate the performance of groundnut genotypes of Indian origin, through field screening to identify leafs spot resistant genotypes with good performance. The experimental device was in a completely randomized Fisher block with three repetitions. After setting up the trial, severity of the disease, percentage of defoliation and yield components were noted. Data from all observations were analyzed using the XLSTAT Pro.1 static analysis software. Statistical analysis of the obtained results showed a significant difference between the obtained values in the different genotypes evaluated for all of the above parameters except the yield. At the end of this study, nineteen (19) resistant genotypes and twenty-three (23) genotypes moderately resistant to leaf spot were identified. These resistant genotypes constitute an additional list of resistant varieties and can be used as a source of resistance in a varietal improvement program.Keywords: Performance, Arachis hypogaea L., ICRISAT collection, India.


2021 ◽  
Vol 13 (5) ◽  
pp. 2658
Author(s):  
Rose Nankya ◽  
John W. Mulumba ◽  
Hannington Lwandasa ◽  
Moses Matovu ◽  
Brian Isabirye ◽  
...  

The cultivated peanut (Arachis hypogaea L.) is one of the most widely consumed legumes globally due to its nutrient content, taste, and affordability. Nutrient composition and consumer preference were determined for twenty local farmer (landrace) and commercial peanut varieties grown in the Nakaseke and Nakasongola districts of the central wooded savanna of Uganda through sensory and laboratory evaluation. Significant differences in nutrient content (p < 0.05) among peanut varieties were found within and across sites. A significant relationship between nutrient content and consumer preference for varieties within and across sites was also realized (Wilk’s lambda = 0.05, p = 0.00). The differences in nutrient content influenced key organoleptic characteristics, including taste, crunchiness, appearance, and soup aroma, which contributed to why consumers may prefer certain varieties to others. Gender differences in variety selection were significantly related to consumer preference for the crunchiness of roasted peanut varieties (F = 5.7, p = 0.016). The results imply that selecting different varieties of peanuts enables consumers to receive different nutrient amounts, while experiencing variety uniqueness. The promotion of peanut intraspecific diversity is crucial for improved nutrition, organoleptic appreciation and the livelihood of those engaged in peanut value chains, especially for the actors who specialize in different peanut products. The conservation of peanut diversity will ensure that the present and future generations benefit from the nutritional content and organoleptic enjoyment that is linked to unique peanut varieties.


2012 ◽  
Vol 10 (3) ◽  
pp. 258-260 ◽  
Author(s):  
Mohar Singh ◽  
Z. Khan ◽  
Krishna Kumar ◽  
M. Dutta ◽  
Anju Pathania ◽  
...  

Fusarium wilt caused by Fusarium oxysporum, Schlecht. emend. Snyd. & Hans. f. sp. ciceri is prevalent in most chickpea-growing countries and is a major devastating disease. Host plant resistance is the most practical method of disease management. Indigenous chickpea germplasm reveals a heterogeneous genetic make-up and the response of resistance to wilt is an unexplored potential source for disease resistance. There are 70 indigenous germplasm lines selected on the basis of their agronomic performance and diverse areas of collections in the country. Of these, four accessions had a highly resistant score of 1 and six had a score of 3 using a 1–9 rating scale, indicating their level of resistance to Fusarium wilt (race 4). Other germplasm accessions of chickpea were found to be moderately resistant to highly susceptible disease reaction. Likewise, the same set of germplasm was also screened for Meloidogyne incognita (race 1) using pot culture under controlled condition. Only one accession was found to be resistant to this pest. These resistant gene sources can be utilised effectively for race-specific chickpea wilt and root-knot resistance breeding programmes.


2011 ◽  
Vol 124 (4) ◽  
pp. 653-664 ◽  
Author(s):  
Hongde Qin ◽  
Suping Feng ◽  
Charles Chen ◽  
Yufang Guo ◽  
Steven Knapp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document