Effect of Container Size, Inoculum Density, and Test Duration on Detecting Resistance to Cylindrocladium Black Rot of Peanut

2012 ◽  
Vol 39 (2) ◽  
pp. 82-87
Author(s):  
J. N. Wilson ◽  
T. A. Wheeler ◽  
M. C. Black ◽  
M. D. Burow ◽  
B. G. Mullinix

Abstract Cylindrocladium black rot (CBR), caused by the fungal pathogen Cylindrocladium parasiticum Crous, Wingfield, and Alfenas, is an important peanut (Arachis hypogaea L.) disease in the Virginia-Carolina and Southeastern U.S. production regions and was first confirmed in Texas in 2004. We refined a screening technique and compared disease assessment methods for CBR using peanut germplasm with known resistance levels. Resistant genotype ‘NC 3033’ and susceptible ‘NC 7’ were compared in a growth chamber using 66 and 164 cm3 container sizes, 15 and 25 microsclerotia/g soil inoculum densities, and 4, 5, and 6 week durations. Root rot ratings (0 to 5 index), percent taproot necrosis and percent secondary root necrosis were estimated. Taproot necrosis was the most reliable method for differentiating between the resistant and susceptible genotype, followed by root rot ratings. The use of secondary root necrosis ratings was less consistent for detecting differences than taproot ratings. Large containers (164 cm3) inoculated at the 25 microsclerotia/g soil density was the most reliable combination for attaining significant genotype differences for taproot necrosis and root rot ratings. The 5 week duration provided the most consistent results for taproot necrosis, while 6 weeks was the most reliable duration for root rot ratings. Percent taproot necrosis is a valid, more objective alternative to root rot index ratings.

1999 ◽  
Vol 26 (2) ◽  
pp. 80-84
Author(s):  
J. E. Hollowell ◽  
B. B. Shew ◽  
M. K. Beute

Abstract Thirteen isolates of Cylindrocladium parasiticum Crous, Wingfield & Alfenas from North Carolina and 11 from Georgia were grown on plates of PDA at 20,25, and 30 C on a temperature-gradient plate. Culture diameters were measured daily for 6 d. Significant differences were not observed among isolates grown at 20 C and cultures was smaller as compared with those grown at 25 and 30 C. At 25 and 30 C, isolates varied consistently in growth. On average, Georgia isolates grew slightly less than North Carolina isolates, and all isolates grew better at the warmer temperature. Growth of three North Carolina isolates was compared to four Florida isolates in a second experiment. Florida isolates grew significantly faster than North Carolina isolates at all temperatures. Isolates from the three states were compared for their ability to cause root rotting on peanut at 25 and 30 C. Plants were grown in soil infested at a standardized inoculum density in temperature-controlled water bath tanks for 7 wk at which time roots were rated for Cylindrocladium black rot development. Georgia isolates caused more root rot than either North Carolina or Florida isolates at both temperatures and also caused more seedling disease. State effects were significant; Florida isolates caused less root rot than Georgia isolates. Temperature by state interactions were not significant which means that high temperature-tolerant isolates of C. parasiticum have not evolved from regional differences in soil temperature. Further, North Carolina field isolates do not appear to have changed in temperature optima since the 1970s.


2012 ◽  
Vol 39 (1) ◽  
pp. 38-42 ◽  
Author(s):  
W. D. Branch ◽  
T. B. Brenneman

Abstract Cylindrocladium Black Rot (CBR) caused by Cylindrocladium parasiticum Crous, Wingfield, & Alfenas syn. C. crotalariae (Loos) Bell & Sobers is a major disease problem in southeast U.S. peanut (Arachis hypogaea L.) production. Field trials were conducted for two-years (2008-09) at a test site (Gibbs Farm) that has a long history of continuous peanut production near the Univ. of Georgia, Coastal Plain Expt. Station, Tifton, GA to evaluate for CBR resistance among new runner-type peanut cultivars. All plots were artificially inoculated with microsclerotia of C. parasiticum after planting each year. Significant differences (P≤0.05) were found among the cultivars and advanced breeding lines for both CBR resistance and tomato spotted wilt virus (TSWV) resistance which was also present each year, but the predominant disease was CBR. Georgia Greener, Georgia-06G, Georgia-07W, Georgia-02C, and Carver were consistently found to be the most CBR resistant; whereas, C-99R and Tifguard were the most susceptible each year. In separate CBR tests conducted in 2009 and 2010 at a different location (Blackshank Farm), Georgia Greener also had the least difference, and Tifguard had the greatest difference, between C. parasiticum inoculated versus non-inoculated plots for pod yield. These combined test results demonstrate that useful levels of CBR resistance are currently available in promising new runner-type peanut cultivars.


1983 ◽  
Vol 10 (2) ◽  
pp. 66-69 ◽  
Author(s):  
C. C. Green ◽  
M. K. Beute ◽  
J. C. Wynne

Abstract Three methods presently used to evaluate disease resistance in peanut (Arachis hypogaea L.) to Cylindrocladium black rot (CBR) were compared to identify the most efficient method to screen peanut lines in field tests. Forty randomly selected F2 families in the F5 generation from a cross of the CBR-resistant source NC 3033 with NC 6 and the two parents were evaluated for percent dead and diseased plants, root rot index and microsclerotia/g of root. Significant differences were detected between the parents (p = 0.05) and among segregates (familes) (p = 0.01) for percent dead and diseased plants only. Error components exceeded the mean square values for differences among segregates for the root rot index and microsclerotia/g of root resulting in no significant differences among entries for these traits and low to no correlations among traits. Percent dead and diseased plants was concluded to be the best of the three methods for screening peanut lines in the field for CBR resistance.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 146-146 ◽  
Author(s):  
W. M. Sun ◽  
L. N. Feng ◽  
W. Guo ◽  
D. Q. Liu ◽  
Z. H. Yang ◽  
...  

In 2008, an outbreak of pod rot of peanut (Arachis hypogaea L.) occurred on most of the peanut cultivars in the Old Yellow River drainage area, the largest peanut-growing region in China. Disease incidence reached as high as 90% in some fields, causing severe yield losses. The black rot of pods and blackened, nonrotting taproots is similar to symptoms of peanut black rot caused by Cylindrocladium parasiticum, but the reddish orange perithecia of C. parasiticum were not found on the taproots close to the surface of the soil. The foliage of affected plants was generally asymptomatic, but some plants turned greener. This pod rot disease was further investigated in 2008 and 2010. Twenty-three Fusarium-like isolates were obtained from symptomatic, surface-disinfested pods with a frequency of 82%. These isolates were fast growing, with flat, thin, and grayish white colonies when cultured on potato dextrose agar (PDA) at 28°C for 3 to 4 days. The hyaline, elongated to cylindrical conidia, aggregated in slimy heads on conidiogenous cells developed from undifferentiated hyphae when observed with the light microscope. The size of conidia (single celled or one septum) varied from 3 to 9 μm long and 1.5 to 3.5 μm wide on the basis of the measurement of 50 spores. Some conidia appeared slightly curved. Ascomata formed within 10 to 14 days, with a punctate appearance on the colony. The cerebriform ascomata were dark brown, pyriform, ostiolate, glabrous, 120 to 170 × 90 to 130 μm, and with necks 30 to 50 μm long. Asci measured 60 to 90 × 6 to 10 μm, were cylindrical to cylindric-clavate, thin walled, and had an apical ring. Ascospore arrangement was obliquely uniseriate or partially biseriate, very pale yellow to hyaline, ellipsoidal, and measured 8 to 12 × 4.5 to 6 μm. Some spores had a median transverse straight or curved septum and were slightly constricted at the septum, with 6 to 10 thin, transverse, hyaline flanges. Morphological characteristics of the isolates with ascomata dark brown and ascospores with 6 to 10 transverse hyaline flanges matched the description for Neocosmospora striata (1). The internal transcribed spacer (ITS) region of rDNA was amplified from extracted template DNA with primer pairs ITS4/ITS5 and sequenced. A 591-bp amplicon (GenBank Accession No. HM461900) had 99% sequence identity with Fusarium solani (HQ607968 and HQ608009) and N. vasinfecta (GU213063), which indicated that these fungi belong to the genus Neocosmospora or Fusarium, although there is no direct sequence evidence that they are N. striata. N. striata has only been previously reported in Japan (2). This species is unique because of the dark brown ascomata and there is no comparable species (1). Koch's postulates were completed by surface-disinfesting 80 peanut pods of cv. Jihua 9813 and soaking them in conidial suspensions (105 conidia/ml) for 2 min. Another 80 other pods soaked in sterile water served as controls. All peanuts were incubated in moist petri dishes under darkness at 28°C. Symptoms similar to those originally observed in the field formed within 10 days on all inoculated peanut pods and not the controls. N. striata was reisolated from all affected peanut pods. To our knowledge, this is first report of N. striata causing peanut pod rot in China and the first description of the anamorph of the fungus. References: (1) P. F. Cannon et al. Trans. Br. Mycol. Soc. 82:673, 1984. (2) S. Udagawa et al. Trans. Mycol. Soc. Jpn. 16:340, 1975.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Farid Abd-El-Kareem ◽  
Ibrahim E. Elshahawy ◽  
Mahfouz M. M. Abd-Elgawad

Abstract Background Black root rot of strawberry plants caused by Rhizoctonia solani, Fusarium solani, and Pythium sp. is a serious disease in Egypt. Biocontrol agents have frequently proved to possess paramount and safe tools against many diseases. The impact of soil treatments with 3 Bacillus pumilus isolates on black root rot disease of strawberry plants caused by R. solani, F., and Pythium sp. under laboratory and field conditions was examined herein on the commonly used ‘Festival’ strawberry cultivar. To increase the bacterial adhesion and distribution on the roots, each seedling was dipped in bacterial cell suspension at 1 × 108 colony-forming units/ml of each separate bacterial isolate for 30 min then mixed with 5% Arabic gum. Results The tested B. pumilus isolates significantly reduced the growth area of these 3 fungi. The two bacterial isolates Nos. 2 and 3 reduced the growth area by more than 85.2, 83.6, and 89.0% for R. solani, F. solani, and Pythium sp., respectively. Likewise, the 3 bacterial isolates significantly (P ≤ 0.05) inhibited the disease under field conditions. Isolates Nos. 2 and 3 suppressed the disease incidence by 64.4 and 68.9% and disease severity by 65.3 and 67.3%, respectively. The fungicide Actamyl had effect similar to that of the 2 isolates. B. pumilus isolates significantly enhanced growth parameters and yields of strawberry plants; isolates Nos. 2 and 3 raised the yield by 66.7 and 73.3%, respectively. Conclusions Bacillus pumilus isolates could effectively manage the black rot disease in strawberry herein. Due to the significant impact of the root rot disease on strawberry yield, B. pumilus should be further tested to manage the disease on strawberry on large scale in Egypt.


Plant Disease ◽  
1997 ◽  
Vol 81 (10) ◽  
pp. 1216-1216 ◽  
Author(s):  
M. E. Sánchez-Hernández ◽  
A. Ruiz-Dávila ◽  
A. Trapero-Casas

Several species of the genus Phytophthora are associated with root rot and trunk cankers in olive trees (Olea europaea L.). Among them, Phytophthora megasperma has been cited as being associated with olive root rots in Greece (1). Unidentified species of Pythium and Phytophthora have also been associated with olive tree root rots in the United States. However, the status of P. megasperma and Pythium spp. as olive tree root pathogens has remained unclear. Following a 5-year period of severe drought in southern Spain, autumn-winter rainfall rates in 1996 to 1997 steadily increased in both quantity and frequency. Under these unusually wet conditions, olive trees remained waterlogged for several months. During this period, we observed foliar wilting, dieback, and death of young trees, and later found extensive root necrosis. In 46 of 49 affected plantations surveyed, P. megasperma was consistently isolated from the rotted rootlets, particularly in young (<1- to 10-year-old trees) plantations. This fungus was not detected on plant material affected by damping-off from several Spanish olive tree nurseries. The opposite situation occurred with P. irregulare. This species was not associated with rotted rootlets in the field. In contrast, it was consistently isolated from necrotic rootlets from young olive plants affected by damping-off. These plants were grown in a sand-lime-peat soil mixture under greenhouse conditions and showed foliar wilting and extensive necrosis of the root systems. Pathogenicity tests were conducted with several isolates of P. megasperma and P. irregulare on 6-month-old rooted cuttings of olive, under both weekly watering and waterlogged conditions. Under waterlogged conditions, both fungal species produced extensive root necrosis 2 weeks after inoculation that resulted in wilting of the aerial parts and rapid plant death. Waterlogged control plants remained without foliar symptoms but a low degree of root necrosis was recorded. In addition, under weekly watering conditions, plants inoculated with either species showed some degree of root rot but foliar symptoms were not evident. No differences in pathogenicity were observed within the Phytophthora or Pythium isolates. Reference: (1) H. Kouyeas and A. Chitzanidis. Ann. Inst. Phytopathol. Benaki 8:175, 1968.


Author(s):  
A. Peerally

Abstract A description is provided for Nectria crotalariae. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Acacia koa, Arachis hypogaea, Carica papaya, Crotalaria anagyroides, Liriodendron tulipifera and Tephrosia vogelii. DISEASE: Causes a collar rot of Crotalaria anagyroides and Tephrosia vogelii (29, 537), and a peg, pod and root necrosis of groundnut in Georgia (USA), a disease which has been named Cylindrocladium black rot of groundnuts. The diseased groundnut plants in the field were chlorotic and wilted and exhibited blighting of the leaf tips and margins. Chlorosis and wilting of the lateral foliage were usually less extensive than those of the erect primary branches (46, 1159). Reported as causing a severe root rot on potted Liriodendron tulipifera seedlings (49, 3016). In Hawaii the pathogen has been reported to cause a collar rot of Carica papaya and Acacia koa (Nishijima & Aragaki, 1973). On Carica papaya the diseased seedlings were characterized by stunting, chlorosis or loss of leaves and rotting of the collar region and crown roots. In glasshouse tests 5 cultivars of flue-cured tobacco proved to be highly susceptible to the pathogen while from 4 cultivars of cotton not visibly infected, the pathogen was isolated from roots (Rowe & Beute, 1973). GEOGRAPHICAL DISTRIBUTION: Hawaii, Sri Lanka and USA. TRANSMISSION: The pathogen is soil-borne.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 586-586 ◽  
Author(s):  
Y. Gai ◽  
Q. Deng ◽  
R. Pan ◽  
X. Chen ◽  
M. Deng

In July 2010, a serious disease of peanut (Arachis hypogaea) resembling Cylindrocladium black rot (CBR) was found in Longnan County, Jiangxi Province, China. Symptoms included chlorotic, yellowish and blighted leaves, and wilting of the plants. Taproots and hypocotyls were blackened and rotted. Clusters of reddish orange spherical fruiting bodies appeared in the lesions present on basal stems, pegs, pods, and roots of peanut. Disease incidence reached as much as 50% in some patches of the field. Plants with symptoms were sampled from fields. Microscopic examination revealed that the reddish orange, spherical fruiting bodies were the perithecia and measured 461.6 (337.5 to 609.4) × 395.5 (309.4 to 496.9) μm. With gentle pressure, asci and ascospores were exuded from perithecia. The asci were hyaline, thin walled, and long stalked. Ascospores were hyaline, falcate with one septum, and measured 43.5 (27.3 to 54.5) × 5.6 (4.1 to 6.8) μm with a length/width (L/W) ratio of 7.8 ± 1.3. A fungus with white-to-pale buff border mycelia and yellowish brown pigment was consistently isolated from the edge of basal stem lesions on potato dextrose agar at 25°C. Mycelia grew at temperatures ranging from 8 to 32°C and the optimum was 25 to 26°C. To determine the species, single-conidial isolates of the fungus were cultured on carnation leaf agar for 7 days at 25°C and 12 h of light/dark conditions. Conidia were hyaline, cylindrical with one to three septa (mostly three septa), and measured 49.3 (27.3 to 70.9) × 5.9 (4.1 to 6.8) μm with L/W ratio of 8.4 ± 1.6. Vesicles were globose and measured 5.5 to 10.9 μm in diameter. The fungus was identified as Cylindrocladium parasiticum (teleomorph Calonectria ilicicola) (1,2). A PCR assay was conducted on one representative isolate (JXLN32) by analyzing multilocus sequences of the TUB2 (coding β-tubulin protein), ACT (coding actin), and CaM gene (coding calmodulin protein) and were amplified and sequenced using the primers reported by Crous et al. (3). Sequences of the studied DNA regions were submitted to GenBank (Accession Nos. TUB2: JF429649; ACT: JQ070809; and CaM: JQ070808). BLAST searches with the existing sequences in GenBank showed that there was 99 to 100% identity with the existing sequences of C. ilicicola (GenBank Accession Nos. TUB2: AY725643; ACT: GQ280446; and CaM: GQ267402). To complete Koch's postulates, inoculum was prepared by mixing the microsclerotia (MS) suspension of the isolate (JXLN32) with soil at a proportion of 10 MS per g of soil. Ten replicate plastic pots containing five peanut seeds (cv. Yueyou 7) each were planted and placed in a glasshouse at 25 ± 2°C. The same number of peanut seeds was used as an uninoculated control. Typical basal stem and roots rot symptoms of CBR were observed in 2 months and C. parasiticum was reisolated from these inoculated diseased plants. No symptoms were detected on the control plants. To our knowledge, this is the first finding of Cylindrocladium black rot in Jiangxi Province, which is the main peanut-producing area in China. The disease has been previously reported in Guangdong Province in southern China but is not known elsewhere (4). Because of its ability to spread through seed and soil and its destructive potential, this pathogen may pose a serious threat to peanut production in China. References: (1) D. K. Bell and E. K. Sobers. Phytopathology 56:1361, 1966. (2) P. W. Crous et al. Mycol. Res. 97:889, 1993. (3) P. W. Crous et al. Stud. Mycol. 50:415, 2004. (4) R. Pan et al. Plant Pathol. 58:1176, 2009.


1989 ◽  
Vol 16 (2) ◽  
pp. 119-122
Author(s):  
D. A. Knauft ◽  
D. W. Gorbet

Abstract Sixteen peanut (Arachis hypogaea L.) genotypes were grown without the use of fungicides for two years in two planting arrangements, one an intrarow spacing typically used in commercial production (5 cm between plants) and the other typically used in breeding selection plots (30 cm between plants). At 10-day intervals throughout each growing season the proportion of necrotic leaf area caused by leafspots (Cercospora arachidicola Hori and Cercosporidium personatum (Berk. & Curt.) Deighton), leafspot disease rating (0-9), and stage of vegetative growth (v stage) were assessed. Leafspot disease ratings of genotypes spaced 30-cm apart were significantly correlated with the ratings of genotypes in 5-cm spacing. There was no interaction between genotypes and spacing. Percentage necrotic area in 30-cm and 5-cm plantings was significantly correlated. However, large experimental error and complex interactions among spacings, genotypes, and time of observation lessened the value of this method of disease assessment. While the correlation of v stage in the two spacings was highly significant, differences among genotypes were not consistent.


1982 ◽  
Vol 9 (1) ◽  
pp. 1-5 ◽  
Author(s):  
T. A. Coffelt ◽  
K. H. Garren

Abstract Cylindrocladium black rot (CBR) of peanuts (Arachis hypogaea L.), caused by Calonectria crotalariae (Loos) Bell & Sobers (Cylindrocladium crotalariae (Loos) Bell & Sobers), is potentially one of the most serious peanut diseases in Virginia. Over 60 peanut lines at multiple locations and 140 peanut lines at a single location were screened in the field for resistance to CBR from 1973–1977 in Virginia and North Carolina. Susceptibility to CBR was determined by number of dead plants per plot in 1973 and by percent dead plants per plot in 1974–1977. In addition, in 1974, 1975 and 1977, visual estimates of CBR damage to roots and pods were made. Florigiant, Spancross, VGP 1 and/or NC 3033 were used as checks to determine relative susceptiability. Results generally indicate that spanish-type peanuts are the most resistant to CBR, valencia-type peanuts the least resistant and Virginia-type peanuts intermediate. Florigiant was consistently one of the most susceptible genotypes, while NC 3033, Spancross and VGP 1 were among the most resistant. Four valencia-type peanuts, 22 virginia-type peanuts, 28 spanish-type peanuts, one segregating line, and one wild species (A. monticola), with resistance equal to or better than Spancross, NC 3033 and/or VGP 1 were identified. Pod and root damage scores generally corresponded with percent diseased plants. However, differences were observed, indicating separate genetic mechanisms may control pod and root resistance to CBR. The significances of variability among sister lines and locations are discussed.


Sign in / Sign up

Export Citation Format

Share Document