scholarly journals Properties Of An Analogue Cheese Obtained From Raw Peanut

2020 ◽  
Vol 47 (2) ◽  
pp. 81-88
Author(s):  
H. Eudier ◽  
S. Ben-Harb ◽  
J.P. Lorand ◽  
F. Duthil ◽  
M. Negahban ◽  
...  

ABSTRACT The focus is on a peanut suspension in which starch is added and that exhibits specific mechanical characteristics relevant for food products. The mixture is composed of water, lipids, starch, and proteins. The process consists of blending together the different constituents, and the study changes the experimental conditions to tune the mechanical behavior of the mixture. The rheological properties (viscosity, indentation) and physical parameters such as color, dry extract, and particle size distribution were measured. The matrix behavior was studied after a centrifugation step necessary to determine stability of the emulsion, and for varying shearing durations. Short shearing duration induce a maximum of firmness, observed by measuring indentation resistance, and a maximum of spreadability, evaluated by shear rheometry. On the contrary, long shearing durations destabilize the matrix emulsion by increasing the oil separation capacity. This study observes structural changes in the rheological behavior of this analogue artificial cheese that correlates with the extent of shearing.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hélène Lalo ◽  
Lara Leclerc ◽  
Jérémy Sorin ◽  
Jérémie Pourchez

AbstractThe reliable characterization of particle size distribution and nicotine delivery emitted by electronic cigarettes (ECs) is a critical issue in their design. Indeed, a better understanding of how nicotine is delivered as an aerosol with an appropriate aerodynamic size is a necessary step toward obtaining a well-designed nicotine transfer from the respiratory tract to the bloodstream to better satisfy craving and improve smoking cessation rates. To study these two factors, recent models of EC devices and a dedicated vaping machine were used to generate aerosols under various experimental conditions, including varying the EC power level using two different types of atomizers. The aerodynamic particle sizing of the resulting aerosol was performed using a cascade impactor. The nicotine concentration in the refill liquid and the aerosol droplet was quantified by liquid chromatography coupled with a photodiode array. The vaporization process and the physical and chemical properties of the EC aerosol were very similar at 15 watts (W) and 25 W using the low-power atomizer but quite distinct at 50 W using the high-power atomizer, as follows: (1) the mass median aerodynamic diameters ranged from 1.06 to 1.19 µm (µm) for low power and from 2.33 to 2.46 µm for high power; (2) the nicotine concentrations of aerosol droplets were approximately 11 mg per milliliter (mg/mL) for low power and 17 mg/mL for high power; and (3) the aerosol droplet particle phase of the total nicotine mass emitted by EC was 60% for low power and 95% for high power. The results indicate that varying the correlated factors (1) the power level and (2) the design of atomizer (including the type of coil and the value of resistance used) affects the particle-size distribution and the airborne nicotine portioning between the particle phase and the gas phase in equilibrium with the airborne droplets.


2001 ◽  
Vol 11 (4) ◽  
pp. 220-227 ◽  
Author(s):  
Michael Schmidt

Abstract The rheological behaviour of model suspensions with spherical particles was experimentally investigated in shear an elongational flows. Particular attention was focussed on the main parameters affecting the flow behaviour of suspensions such as particle size distribution, particle size, particle surface, humidity, temperature and viscosity of the matrix fluids. All variables were investigated depending on the pre-shear conditions. In this regard the validity of the time-temperature-superposition and the Trouton-ratio was verified for suspensions with spherical particles.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zizeng Lin ◽  
Hai Yang ◽  
Huiming Chen

A ceramic permeable brick was selected for study in a device that was designed to fully investigate the process and characteristics of clogging in permeable bricks. In order to evaluate the permeability influenced by clogging, a simulated rainfall was filtered through the permeable brick placed in an innovative device. The macroscopic and microscopic changes in the brick and the filtrate were all measured to fully investigate the causes and process of clogging. Then, the mechanism of clogging in the permeable brick pores was further discussed. The results showed that the clogging risk of permeable brick was extremely high, and it can result in a complete clogging in only 5–10 years under the experimental conditions. The permeability coefficient and porosity both decreased exponentially with the increase in filtrate, which was attributed to the clogging of the internal pore structure due to particle interception. The chord size distribution results stressed that the blockage mainly occurred in the upper layer pores in the range of 0.5–1.5 mm, which is relatively sensitive to clogging due to the particle size distribution in rain water. The particle size distribution of the influent and effluent indicated that the clogging process could completely remove particles larger than 88 µm but showed variable removal efficiency for particles with sizes of 20–88 µm. This research offers new insight into the clogging of permeable bricks and provides theoretical guidance for restoring the brick permeability.


2020 ◽  
Vol 21 (17) ◽  
pp. 6169
Author(s):  
Nataliya R. Rovnyagina ◽  
Gleb S. Budylin ◽  
Yuri G. Vainer ◽  
Tatiana N. Tikhonova ◽  
Sergey L. Vasin ◽  
...  

Thioflavin T (ThT) assay is extensively used for studying fibrillation kinetics in vitro. However, the differences in the time course of ThT fluorescence intensity and lifetime and other physical parameters of the system, such as particle size distribution, raise questions about the correct interpretation of the aggregation kinetics. In this work, we focused on the investigation of the mechanisms, which underlay the difference in sensitivity of ThT fluorescence intensity and lifetime to the formation of protein aggregates during fibrillation by the example of insulin and during binding to globular proteins. The assessment of aggregate sizes and heterogeneity was performed using dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Using the sub-nanosecond resolution measurements, it was shown that the ThT lifetime is sensitive to the appearance of as much as a few percent of ThT bound to the high-affinity sites that occur simultaneously with an abrupt increase of the average particle size, particles concentration, and size heterogeneity. The discrepancy between ThT fluorescence intensity and a lifetime can be explained as the consequence of a ThT molecule fraction with ultrafast decay and weak fluorescence. These ThT molecules can only be detected using time-resolved fluorescence measurements in the sub-picosecond time domain. The presence of a bound ThT subpopulation with similar photophysical properties was also demonstrated for globular proteins that were attributed to non-specifically bound ThT molecules with a non-rigid microenvironment.


Author(s):  
H. Srikanth ◽  
P. Poddar

Nanocomposites hold tremendous potential as ‘designer’ materials with multifunctional, tunable physical properties. We have synthesized and studied two classes of nanocomposite systems –(a) Magnetorhelogical (MR) fluids with uniformly dispersed Fe nanoparticles and (b) Polypyrrole doped with soft ferrite nanoparticles. Static and dynamic magnetic measurements show a variety of phenomena ranging from superparamagnetism to collective spin-flip transitions. A resonant RF method has been used to map the switching and anisotropy fields. Our studies indicate that the rich cooperative magnetism in these systems is governed not only by the particle size distribution but also by the matrix-mediated interactions.


Author(s):  
S. Sindhu ◽  
S. Jegadesan ◽  
R. Renu ◽  
S. Valiyaveettil

Two classes of nanocomposites involving polymers and magnetic particles or silica were synthesized and characterized. Effect of polymer on the morphology of the composites and the matrix filler interactions were studied in detail. Different analytical tools were used to characterize these composites and show a core-shell structure for the novel nanocomposites reported in this paper. TEM studies on these composites gave particle size distribution in nanometer range. The morphology and size of the particle changed significantly with the polymer used.


Author(s):  
F. I. Grace ◽  
L. E. Murr

During the course of electron transmission investigations of the deformation structures associated with shock-loaded thin foil specimens of 70/30 brass, it was observed that in a number of instances preferential etching occurred along grain boundaries; and that the degree of etching appeared to depend upon the various experimental conditions prevailing during electropolishing. These included the electrolyte composition, the average current density, and the temperature in the vicinity of the specimen. In the specific case of 70/30 brass shock-loaded at pressures in the range 200-400 kilobars, the predominant mode of deformation was observed to be twin-type faults which in several cases exhibited preferential etching similar to that observed along grain boundaries. A novel feature of this particular phenomenon was that in certain cases, especially for twins located in the vicinity of the specimen edge, the etching or preferential electropolishing literally isolated these structures from the matrix.


2020 ◽  
Vol 69 (4) ◽  
pp. 102-106
Author(s):  
Shota Ohki ◽  
Shingo Mineta ◽  
Mamoru Mizunuma ◽  
Soichi Oka ◽  
Masayuki Tsuda

Sign in / Sign up

Export Citation Format

Share Document