scholarly journals Description of biological wastewater treatment plants of city of Odesa as sources of marine environment nutrient pollution in current period

2020 ◽  
pp. 127-135
Author(s):  
Yu. S. Tuchkovenko ◽  
O. Yu. Sapko ◽  
O. A. Tuchkovenko

Biological wastewater treatment plants (the BTPs) of city of Odesa (Northern and Southern Plants) are the most powerful permanent sources of nutrient pollution of coastal waters of Odesa Region of the north-western part of the Black Sea (the NWPBS) and the Khadzhybei Liman. The article includes a comparative analysis of changes, taking place since the beginning of the 21st century, related to the qualitative composition of return water of the Northern and Southern BTPs and the amount of nutrients reaching the marine environment together with such water, as well as the analysis of possible influence of such changes on eutrophication of coastal waters of Odesa Region of the NWPBS and the Khadzhybei Liman. It was established that despite significant decrease (by 1.7 - 2 times) of return water discharged from the BTPs the amount of nitrates and nitrites reaching the marine environment together with such water increased by 4-6 times. At the same time the reduced inflow of organic matter, ammonium nitrogen and phosphates can be observed. Treatment facilities of Odesa were put into operation back in the 1970s. They use a then typical technology of biological cleaning of wastewater from nutrient compounds in aeration tanks providing aerobic conditions. The technology is considered as incomplete in terms of nitrogen compounds treatment since its final product includes nitrate nitrogen in large quantities. When reaching the marine environment it is absorbed by algae at the stage of primary production of organic matter and thus is transformed in organic nitrogen again. It was noted that since the coastal waters of Odesa Region of the NWPBS and the Khadzhybei Lyman have a high level of trophicity and currently there is a disbalance between mineral nitrogen and phosphorus concentrations in the water towards insufficiency of mineral nitrogen reserves (as compared with the standard Redfield stoichiometric ratio), additional inflow of nitrates and nitrites in the marine environment together with return water from the BTPs would, in certain circumstances, lead to algal bloom and aggravation of negative eutrophication-related consequences. The research allowed making a conclusion that a modern flow sheet of advanced biological cleaning (treatment) of wastewater from nitrogen compounds should be implemented at the Northern and Southern BTPs in order to reduce the inflow of nitrates in the marine environment. Such flow sheet should ensure both nitrification and denitrification processes.

2018 ◽  
Vol 251 ◽  
pp. 03029 ◽  
Author(s):  
Tran Ha Quan ◽  
Elena Gogina ◽  
Tran Van Quang

All around the world, activated sludge is the classical and traditional biological wastewater treatment for municipal and industrial wastewater. With the development of social and technology, the concentration of pollutants has been increased, so the performance of the old wastewater treatment plants not guaranteed. Therefore, upgrade and reconstruction wastewater treatment system becomes the main task of protection environment, especially in the developing countries. Application biofilms in process biological wastewater treatment is one of technology method and it has many advantages. In the Sequencing Batch Reactor, the Mutag BioChip 25TM provides to the bacteria an optimal habitat at the surface area, increasing rate of Utilization of Substrates 20 – 30% and efficiency of organic matter removal from 10 – 15%.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


2021 ◽  
Vol 941 (1) ◽  
pp. 012001
Author(s):  
Basamykina Alena ◽  
Kurkina Ekaterina ◽  
Kameristaya Maria

Abstract Biological treatment methods are used to remove organic and some inorganic substances from wastewater using the simplest organisms that use these substances for nutrition, breaking them down using cellular processes. The article deals with the aerobic, anaerobic and anoxic stages of biological wastewater treatment. Their differences are explained and the best way to use biological processes is analyzed according to the type of industry/production. At wastewater treatment plants, anaerobic treatment is often used at first to remove a significant part of organic substances from wastewater before sending them for further aerobic treatment. Aerobic treatment is effective for various types of wastewater, especially with lower biochemical oxygen demand (BOD) and chemical oxygen demand (COD). A comparative analysis of wastewater composition from food, oil and gas processing, pharmaceutical and pulp and paper industries was carried out. In the presence of organic compounds, the technology is chosen depending on the total organic matter content or the total COD content, which characterizes the total organic matter in water. A combination of anaerobic and aerobic methods is possible, if a discharge into the sewer system or into water bodies is required. The grounds for the application of biological wastewater treatment of these industries are given.


2003 ◽  
Vol 38 (10) ◽  
pp. 2453-2463 ◽  
Author(s):  
C. W. Randall ◽  
E. U. Cokgor ◽  
Z. Kisoglu ◽  
W. Punrattanasin ◽  
U. Erdal ◽  
...  

2021 ◽  
Vol 6 (4) ◽  
pp. 244-250
Author(s):  
Serhii Protsenko ◽  
◽  
Mykola Kizyeyev ◽  
Olha Novytska ◽  
◽  
...  

The possibility of increasing the efficiency of municipal wastewater treatment plant (WWTP) operation by changing the flow diagram of biological wastewater treatment in aeration tanks at minimum expenses for their reconstruction is shown in the paper on the example of one of the regional centres of Ukraine. The technology of nitri-denitrification of wastewater according to the flow diagram of the two-stage modified Ludzak-Ettinger process is offered for the considered conditions. The distribution of wastewater flows and internal nitrate recycling between the individual stages of this flow diagram has been optimized in order to minimize the residual content of total nitrogen in the treated effluents. Computer dynamic modelling of biochemical processes has proved the high efficiency and reliability of the flow diagram proposed by the authors.


2015 ◽  
Vol 809-810 ◽  
pp. 1573-1578
Author(s):  
Casen Panaitescu ◽  
Monica Emanuela Stoica ◽  
Ciner Fehiman

Manufacture of wastewater treatment technologies is an important issue due to the complexity of design parameters and performance. Biological wastewater treatment is a process in which the intensity of oxygen transfer into water is an issue that has been extensively studied but yet insufficiently resolved. The present paper aims to describe an aeration system developed by the author in the laboratory by means of non-conventional technologies, and subsequently implemented in refinery wastewater treatment plants. The aeration system takes the form of modules, which are equipped with a new type of membrane. The analysis of the system performance revealed that oxygen transfer was 62%, specific adsorption of oxygen was 37 % and the specific oxygen transfer was 7%/m. The advantages of this new system are as follows: compared to existing technologies there is a higher rate of oxygen transfer into water; longer life; there are no dead zones in the basin as a result of their location; possibility of operating on separate sections.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1650 ◽  
Author(s):  
Krzysztof Czerwionka ◽  
Anna Wilinska ◽  
Agnieszka Tuszynska

Measurements for determining the effect of chemically enhanced primary treatment (CEPT) on the efficiency of pollutant removal from wastewater were carried out using conventional inorganic coagulants PIX113 with polymer A110 (Kemipol, Police, Poland) and unconventional cationic organic coagulants Cofloc (Attana, Coalville, UK) C29510 (Kemipol, Police, Poland) and Sedifloc 575 (3F Chimica, Sandrigo, Italy). The average removal efficiency in the 2-h sedimentation process was 46%, 34%, 8%, 12% for the total suspended solids, organic matter (COD), total nitrogen, and total phosphorus, respectively. The use of organic coagulants contributed to 14–81% increase of pollutant removal efficiency. Substantial discrepancies in biological nutrient removal processes were not discovered in two-phase (anaerobic-anoxic) experiments without and with the addition of the organic coagulants. The increase in organic matter removal efficiency as a result of the CEPT process may contribute to a 65–80% increase in biogas production. The conducted research confirms the possibility of using organic coagulants in the primary precipitation process in wastewater treatment plants (WWTPs) in accordance with the principles of maximum energy recovery, thereby promoting renewable energy sources. Additionally, organic coagulants, as opposed to inorganic ones, do not cause a significant increase of chloride and sulfate ion concentrations, which facilitates the use of treated wastewater in the water reuse systems, such as irrigation of agricultural crops.


2019 ◽  
Vol 80 (12) ◽  
pp. 2352-2361
Author(s):  
L. M. L. Silva ◽  
A. F. Santiago ◽  
G. A. Silva ◽  
A. L. P. Castro ◽  
L. S. Bastos ◽  
...  

Abstract The use of light-emitting diode (LED)-illuminated photobioreactors with microalgae has been extensively studied for wastewater treatment. Most studies have used isolated microalgae species; however, this practice does not match the reality of conditions in wastewater treatment plants. Operational conditions that promote greater growth of algal biomass and that remove pollutants most effectively are disputed in the literature. In this context, LED-illuminated photobioreactors with microalgae were evaluated using multivariate analysis in order to optimize removal of pollutants (nitrogen, phosphorus, and carbonaceous organic matter). Three variables were evaluated: operating time, LED wavelength, and luminous flux intensity. A microalgae consortium was used in the photobioreactor. In addition to the LED-illuminated photobioreactors, control photobioreactors illuminated by sunlight were also operated. Using the results obtained in the optimization, a scaled-up reactor approximately 8.5 times larger in volume was operated to evaluate if the behavior would be maintained. The best operational conditions for the removal of pollutants were observed in LED-illuminated photobioreactors operated under a light intensity of 700 μmol·m−2s−1 for 15 days. Under these conditions, it was possible to remove 89.97% of carbonaceous organic matter, 86.50% of nitrogen, and 30.64% of phosphorus. The scaled-up photobioreactor operated with similar performance.


Sign in / Sign up

Export Citation Format

Share Document