scholarly journals Possible Effect of Headphone Usage on Working Memory Among Students in Faculty of Medicine, Ahmadu Bello University, Zaria‒Nigeria

2019 ◽  
pp. 1-4
Author(s):  
Yushau Yusuf ◽  
Muhammad U.A ◽  
Isah F.A

Working memory is a system that is responsible for transient holding and processing of new and already stored information. It also involves processing for reasoning, comprehension, learning and memory updating. Headphones are a pair of small loudspeakers that are designed to be held in place close to a user’s ear. They are electroacoustic transducers which convert electrical signals to a corresponding sound in the user’s ear. Several studies have recently shown a link between cognitive abilities and response to hearing aid and signal processing in the brain. Therefore, the relationship between headphone usage among healthy subjects become pertinent. This study is aimed at evaluating the effect of headphone on working memory using N-back task. One hundred (100) participants (55 headphone users and 45 non-headphone user’s) within the age range of 18-31 years were assessed. Participants were instructed to keep in memory, a series of letters and say “target” whenever there was a repetition of letter with exactly one intervening letter and to remain silent when any other letter appeared. The results of this study showed that there was no statistically significant difference in working memory between headphone and non-headphone users with p>0.05. In conclusion, this study revealed headphone use has no effect on working memory of the participants subjected to N–back test.

Author(s):  
Satoshi Tsujimoto ◽  
Mariko Kuwajima ◽  
Toshiyuki Sawaguchi

Abstract. The lateral prefrontal cortex (LPFC) plays a major role in both working memory (WM) and response inhibition (RI), which are fundamental for various cognitive abilities. We explored the relationship between these LPFC functions during childhood development by examining the performance of two groups of children in visuospatial and auditory WM tasks and a go/no-go RI task. In the younger children (59 5- and 6-year-olds), performance on the visuospatial WM task correlated significantly with that in the auditory WM task. Furthermore, accuracy in these tasks correlated significantly with performance on the RI task, particularly in the no-go trials. In contrast, there were no significant correlations among those tasks in older children (92 8- and 9-year-olds). These results suggest that functional neural systems for visuospatial WM, auditory WM, and RI, especially those in the LPFC, become fractionated during childhood, thereby enabling more efficient processing of these critical cognitive functions.


Author(s):  
А.В. Марусин ◽  
О.А. Макеева ◽  
К.В. Вагайцева ◽  
А.В. Бочарова ◽  
М.Г. Сваровская ◽  
...  

Physiological changes in the brain with natural aging and the development of dementia have a common genetic basis, which makes it important to search for genetic variants that delineate the natural decline in cognitive abilities with age and dementia of the Alzheimer’s type. Objective: the search for the relationship between two polymorphic variants (rs429358 and rs7412) APOE gene and their protein isoforms (apoE) with the variability of cognitive functions in the elderly, determined by Montreal Cognitive Assessmnet (MoCA) total score. The study was performed on a group of 695 elderly people (177 men and 518 women) tested by a battery of MoCA tests. Genotyping was carried out by real-time PCR using TaqMan probes. The analysis of genotypic variability associations with the nominal trait was performed by the Kruskel-Wallis and the median test nonparametric methods.It was shown that the rs429358*C allele carriers and protein isoforms e4/e4+e2/e4+e3/e4 carriers in comparison with the e3/e3 homozygous have the greatest risk of decreased cognitive abilities in old age (OR (95% CI) was 1.51 (1.09 - 2.10), c = 6.66, p = 0.01 and OR = 1.64, 95% CI (1.11 - 2.44), c = 6.76, p = 0.009, respectively). Probably, the revealed associations indicate to the presence of common genes and mechanisms for dementia and intellect with normal variability of cognitive functions inheritance.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 98-98
Author(s):  
Corinne Cannavale ◽  
Caitlyn Edwards ◽  
Ruyu Liu ◽  
Samantha Iwinski ◽  
Anne Walk ◽  
...  

Abstract Objectives Carotenoids are plant pigments known to deposit in neural tissues including the hippocampus, a brain substrate that supports several memory forms. However, there is a dearth of knowledge regarding carotenoid status and working memory function in children. Accordingly, this study aimed to understand the relationship between macular and skin carotenoids to visual and auditory working memory (WM) function. Methods Seventy preadolescent children (7–12 years, 32 males) were recruited from the East-Central Illinois area. Auditory working memory was assessed using the story recall subtest of the Woodcock-Johnson IV Test of Cognitive Abilities. A subsample (N = 61, 27 males) completed a visual working memory task and reaction time was quantified to determine speed of memory processing at set sizes of 1 to 4 items. Macular pigment optical density (MPOD) was assessed using customized heterochromatic flicker photometry. Skin carotenoids were assessed using reflection spectroscopy (Veggie Meter). Hierarchical linear regressions were conducted to assess the relationship between carotenoid status and WM function, while controlling for age, sex, income, and whole-body % fat (DXA). Results Auditory WM was positively associated with skin carotenoids (b = 0.263, P = 0.039) but not MPOD (b = −0.044, P = 0.380). In contrast, MPOD was significantly associated with faster visual WM speed at set size 3 (b = −0.253, P = 0.039) and trending at set sizes of 1 (b = −0.225, P = 0.051), 2 (b = −0.171, P = 0.121), and 4 (b = −0.230, P = 0.055). Interestingly, skin carotenoids were not related to visual WM performance at either set size (all P’s > 0.300). Conclusions These results indicate that auditory and visual WM may be differentially related to carotenoids. While skin carotenoids encompass all carotenoids consumed in diet, lutein and zeaxanthin are the only carotenoids which deposit in the macula. Given that MPOD was only related to visual WM, this suggests lutein plays a larger role in these neural functions relative to auditory WM. Interestingly, MPOD's relationship with visual WM increased in strength with the more difficult trial type (i.e., increasing set size), indicating MPOD is related at higher levels of WM capacity. Funding Sources This study was funded by the Egg Nutrition Center.


2019 ◽  
Author(s):  
Ilona Ruotsalainen ◽  
Tetiana Gorbach ◽  
Jaana Perkola ◽  
Ville Renvall ◽  
Heidi J. Syväoja ◽  
...  

AbstractPhysical activity and exercise beneficially link to brain properties and cognitive functions in older adults, but it is unclear how these results generalise to other age groups. During adolescence, the brain undergoes significant changes, which are especially pronounced in white matter. Existing studies provide contradictory evidence regarding the influence of physical activity or aerobic-exercise on executive functions in youth. Little is also known about the link between both aerobic fitness and physical activity with white matter during puberty. For this reason, we investigated the connection between both aerobic fitness (20-m shuttle run) and physical activity (moderate-to-vigorous intensity physical activity) with white matter in 59 adolescents (12.7–16.2 years). We further determined whether white matter interacts with the connection of fitness or physical activity with three core executive functions (sustained attention, spatial working memory and response inhibition). Our results showed that only the level of aerobic fitness, but not of physical activity was related to white matter properties. Furthermore, the white matter of specific tracts also moderated the links of aerobic fitness and physical activity with working memory. Our results suggest that aerobic fitness and physical activity have an unequal contribution to the properties of white matter in adolescent brains. We propose that the differences in white matter properties could underlie the variations in the relationship between either physical activity or aerobic fitness with working memory.HighlightsAerobic fitness level, but not physical activity, is associated with white matter properties in several white matter tracts in the brain.The relationship between aerobic fitness and working memory was moderated by fractional anisotropy of the body of corpus callosum and in the right superior corona radiata.The relationship between physical activity and working memory was moderated by fractional anisotropy of the body and genu of corpus callosum.


2021 ◽  
pp. annrheumdis-2021-219931
Author(s):  
Jeanette Trickey ◽  
Ilfita Sahbudin ◽  
Mads Ammitzbøll-Danielsen ◽  
Irene Azzolin ◽  
Carina Borst ◽  
...  

ObjectivesThis study aimed to determine the prevalence of ultrasound-detected tendon abnormalities in healthy subjects (HS) across the age range.MethodsAdult HS (age 18–80 years) were recruited in 23 international Outcome Measures in Rheumatology ultrasound centres and were clinically assessed to exclude inflammatory diseases or overt osteoarthritis before undergoing a bilateral ultrasound examination of digit flexors (DFs) 1–5 and extensor carpi ulnaris (ECU) tendons to detect the presence of tenosynovial hypertrophy (TSH), tenosynovial power Doppler (TPD) and tenosynovial effusion (TEF), usually considered ultrasound signs of inflammatory diseases. A comparison cohort of patients with rheumatoid arthritis (RA) was taken from the Birmingham Early Arthritis early arthritis inception cohort.Results939 HS and 144 patients with RA were included. The majority of HS (85%) had grade 0 for TSH, TPD and TEF in all DF and ECU tendons examined. There was a statistically significant difference in the proportion of TSH and TPD involvement between HS and subjects with RA (HS vs RA p<0.001). In HS, there was no difference in the presence of ultrasound abnormalities between age groups.ConclusionsUltrasound-detected TSH and TPD abnormalities are rare in HS and can be regarded as markers of active inflammatory disease, especially in newly presenting RA.


2021 ◽  
Vol 118 (49) ◽  
pp. e2110811118
Author(s):  
Young Hye Kwon ◽  
Kwangsun Yoo ◽  
Hillary Nguyen ◽  
Yong Jeong ◽  
Marvin M. Chun

While there is a substantial amount of work studying multilingualism’s effect on cognitive functions, little is known about how the multilingual experience modulates the brain as a whole. In this study, we analyzed data of over 1,000 children from the Adolescent Brain Cognitive Development (ABCD) Study to examine whether monolinguals and multilinguals differ in executive function, functional brain connectivity, and brain–behavior associations. We observed significantly better performance from multilingual children than monolinguals in working-memory tasks. In one finding, we were able to classify multilinguals from monolinguals using only their whole-brain functional connectome at rest and during an emotional n-back task. Compared to monolinguals, the multilingual group had different functional connectivity mainly in the occipital lobe and subcortical areas during the emotional n-back task and in the occipital lobe and prefrontal cortex at rest. In contrast, we did not find any differences in behavioral performance and functional connectivity when performing a stop-signal task. As a second finding, we investigated the degree to which behavior is reflected in the brain by implementing a connectome-based behavior prediction approach. The multilingual group showed a significant correlation between observed and connectome-predicted individual working-memory performance scores, while the monolingual group did not show any correlations. Overall, our observations suggest that multilingualism enhances executive function and reliably modulates the corresponding brain functional connectome, distinguishing multilinguals from monolinguals even at the developmental stage.


2019 ◽  
Vol 9 (6) ◽  
pp. 144 ◽  
Author(s):  
Ali Nabi Duman ◽  
Ahmet Emin Tatar ◽  
Harun Pirim

The increasing availability of high temporal resolution neuroimaging data has increased the efforts to understand the dynamics of neural functions. Until recently, there are few studies on generative models supporting classification and prediction of neural systems compared to the description of the architecture. However, the requirement of collapsing data spatially and temporally in the state-of-the art methods to analyze functional magnetic resonance imaging (fMRI), electroencephalogram (EEG) and magnetoencephalography (MEG) data cause loss of important information. In this study, we addressed this issue using a topological data analysis (TDA) method, called Mapper, which visualizes evolving patterns of brain activity as a mathematical graph. Accordingly, we analyzed preprocessed MEG data of 83 subjects from Human Connectome Project (HCP) collected during working memory n-back task. We examined variation in the dynamics of the brain states with the Mapper graphs, and to determine how this variation relates to measures such as response time and performance. The application of the Mapper method to MEG data detected a novel neuroimaging marker that explained the performance of the participants along with the ground truth of response time. In addition, TDA enabled us to distinguish two task-positive brain activations during 0-back and 2-back tasks, which is hard to detect with the other pipelines that require collapsing the data in the spatial and temporal domain. Further, the Mapper graphs of the individuals also revealed one large group in the middle of the stimulus detecting the high engagement in the brain with fine temporal resolution, which could contribute to increase spatiotemporal resolution by merging different imaging modalities. Hence, our work provides another evidence to the effectiveness of the TDA methods for extracting subtle dynamic properties of high temporal resolution MEG data without the temporal and spatial collapse.


2019 ◽  
Vol 7 (3) ◽  
pp. 430-444 ◽  
Author(s):  
Andrew D. Grotzinger ◽  
Amanda K. Cheung ◽  
Megan W. Patterson ◽  
K. Paige Harden ◽  
Elliot M. Tucker-Drob

In adults, psychiatric disorders are highly comorbid and are negatively associated with cognitive abilities. Individual cognitive measures have been linked with domains of child psychopathology, but the specificity of these associations and the extent to which they reflect shared genetic influences are unknown. In this study we examined the relationship between general factors of cognitive ability ( g) and psychopathology ( p) in early development using two genetically informative samples: the Texas “Tiny” Twin Project (TXtT; N = 626, age range = 0.16–6.31 years) and the Early Childhood Longitudinal Study–Birth Cohort (ECLS-B; N ≈ 1,300 individual twins, age range = 3.7–7.1 years). The total p–g correlation (−.21 in ECLS-B; −.34 in TXtT) was primarily attributable to genetic and shared environmental factors. The early age range of participants indicates that the p–g association is a reflection of overlapping genetic and shared environmental factors that operate in the first years of life.


2019 ◽  
Vol 33 (10) ◽  
pp. 1237-1247 ◽  
Author(s):  
Estibaliz Arce ◽  
Rita Balice-Gordon ◽  
Sridhar Duvvuri ◽  
Melissa Naylor ◽  
Zhiyong Xie ◽  
...  

Background: PF-06412562 is an orally bioavailable, selective dopamine D1/D5 receptor partial agonist with a non-catechol structure under evaluation for treatment of cognitive impairment in schizophrenia. Aims: This randomized, double-blind, placebo-controlled, parallel-group, Phase 1b study examined the pharmacokinetics and pharmacodynamics of three doses of PF-06412562 (3 mg, 9 mg, and 45 mg twice daily) over 15 days in patients with schizophrenia receiving antipsychotics. Methods: Primary endpoints included adjunctive safety/tolerability and effects on MATRICS Consensus Cognitive Battery Working Memory domain and reward processing (Monetary Incentive Delay) tasks. Exploratory endpoints included other behavioral/neurophysiological tasks, including the N-back task. Results: Among 95 subjects (78% male; mean age 34.8 years), baseline characteristics were similar across groups. The MATRICS Consensus Cognitive Battery Working Memory composite change from baseline on Day 13 improved in all groups, the smallest improvement was observed in the 45 mg group and was significantly smaller than that in the placebo group (two-sided p=0.038). For the Monetary Incentive Delay task (change from baseline in blood-oxygen-level-dependent functional magnetic resonance imaging activation in anterior ventral striatum for the contrast of cue gain>cue no gain on Day 15), no PF-06412562 dose was significantly different from placebo. No doses of PF-06412562 showed a significant difference on two-back task accuracy versus placebo. Conclusions: Adjunctive treatment with PF-06412562 was safe and well tolerated in patients with schizophrenia. PF-06412562 failed to show clinical benefit relative to placebo on assessments of cognition or reward processing in symptomatically stable patients over a 15-day treatment period. Numerous limitations due to the safety study design warrant further efficacy evaluation for this drug mechanism.


Sign in / Sign up

Export Citation Format

Share Document