scholarly journals DARRIEUS TYPE WIND TURBINE WITH CONTROLLED BLADES

2020 ◽  
Vol 17 (2) ◽  
pp. 69-72
Author(s):  
V. Кауаn ◽  

The results of studies on possibility of increasing efficiency in the use of wind energy and improving the dynamic characteristics of Darrieus wind turbine with straight blades are described. It is shown how the values of torque on the rotor shaft may be optimized by controlling the orientation of the turbine blades relative to the oncoming flow. Control of blades was provided with a cylindrical track of the special form in plan. The track form allowed to establish optimum angle of attack on each site of blade circular trajectory. It allowed to increase power coefficient Cp by 1.5 times and to reduce wind speed at which there is self-start of the wind turbine

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2649 ◽  
Author(s):  
Artur Bugała ◽  
Olga Roszyk

This paper presents the results of the computational fluid dynamics (CFD) simulation of the airflow for a 300 W horizontal axis wind turbine, using additional structural elements which modify the original shape of the rotor in the form of multi-shaped bowls which change the airflow distribution. A three-dimensional CAD model of the tested wind turbine was presented, with three variants subjected to simulation: a basic wind turbine without the element that modifies the airflow distribution, a turbine with a plano-convex bowl, and a turbine with a centrally convex bowl, with the hyperbolic disappearance of convexity as the radius of the rotor increases. The momentary value of wind speed, recorded at measuring points located in the plane of wind turbine blades, demonstrated an increase when compared to the base model by 35% for the wind turbine with the plano-convex bowl, for the wind speed of 5 m/s, and 31.3% and 49% for the higher approaching wind speed, for the plano-convex bowl and centrally convex bowl, respectively. The centrally convex bowl seems to be more appropriate for higher approaching wind speeds. An increase in wind turbine efficiency, described by the power coefficient, for solutions with aerodynamic bowls was observed.


2021 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Wahyu Santoso ◽  
Herman Saputro ◽  
Husin Bugis

<p><em>Energy from fossil fuels consisting of petroleum, coal, natural gas containing raw material for energy fulfillment in Indonesia is still very central through the use of raw materials from renewable energy is still very low. In Indonesia the potential for renewable energy such as wind energy needs to be optimized. One of the uses of wind energy is through savonius wind turbine as electricity generators. Characteristics of savonius wind turbine with vertical axis rotors which gave a simple shape, and that able to control low speeds. This is in accordance with regions in Indonesi which have low average speeds.         This experimental study, aims to determine the description of wind potential and determine the performance of savonius wind turbines on the coast of Demak regency on the electrical energy produced. Savonius wind turbine used is made of galvalum material in the form of an S type rotor with diameter 1.1 m and height 1.4 m, using pulley transmission system with multiplication ratio 1:6 dan using generator type PMG 200 W. This research uses the method experiment. Data collection in the form of wind speed, humidity, temperature, rotor rotation speed, voltage and electric curret is carried out at 14.30 to 17.30 Western Indonesian Time. Data Analysis in this study uses quantitative descriptive analysis. The result showed the potential of wind on the coast of Demak regency have an average wind speed of 2,02 m/s with a temperature of 31</em><em>,</em><em>34 </em><em><sup>0</sup></em><em>C and humidity of 76,96. And the performance of the installed wind turbine produces the highest power 3.5 watt with an electric power coefficient of 0,181 and tip speed ratio around 1,75. From these result, the potensial of wind with performance savonius turbine can generate electricity used for pond lighting in the village Berahan Kulon Kecamatan Wedung. </em><em></em></p>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Naveen Prakash Noronha ◽  
Krishna Munishamaih

Abstract This study intends to examine the performance of a balloon-assisted micro airborne wind turbine in a low wind speed location. The influence of the balloon separation gap on the airborne wind energy system (AWES) performance is also explored. A micro-AWES with a diameter of 3 m and a power output of 1 kW was fabricated and tested at 50, 100, 150, 200, and 250 m. Further, the optimum separation spacing of 13 m was maintained between the balloon and the ducted turbine to reduce balloon turbulence on the turbine. The airborne wind turbine achieved a maximum power output of 250 W at 250 m height while the average wind speed remained 6 m/s. The maximum power coefficient obtained was 0.25 while annual energy production (AEP) remained 1200 kWh. The low power coefficient is credited to the turbulence and drifting in the airborne system and the drag caused by the airborne structure. While a cost-effective commercial model of micro AWES is still being developed, the present work attempts to harvest wind energy at high elevations in low wind speed areas.


Author(s):  
Manoj Kumar Chaudhary ◽  
S Prakash

This paper aims to optimize and investigate the small horizontal axis wind turbine blades at low wind speed. The objective of this research work is to explain the design method based on BEM theory for 0.2 m blade rotors with constant, variable and linear chord with twisted blade geometry. MATLAB and Xfoil programs were used for BEM principles and wind turbines with SG6043 airfoil. A numerical and experimental study was carried out to examine the impact of rotor solidity from 0.057 to 0.207 and the number of blades from 3 to 7 in this research work. The experimental blades were developed by using the 3D printing additive manufacturing technique. The investigation of the rotors has been done in an open wind tunnel, at wind speed from 2 to 8 m/s. The initial investigation range included tip speed ratios from 2 to 8, and angle of attacks from 2 to 20°. Later on these parameters were varied in Matlab and Xfoil software optimization and investigation of the power coefficient, blade geometry, number of blades and blade pitch angle. It was found that the rotor solidity 0.055 to 0.085 displayed better performances.


2017 ◽  
Vol 7 (1.2) ◽  
pp. 246
Author(s):  
Bambang Sugiyono Agus Purwono ◽  
Masroni . ◽  
Awan Setiawan ◽  
Tundung Subali Patma ◽  
Ida Bagus Suardika

The objective of this paper is to simulate the effects upon the wind speed, variation of turbine blades and interaction of wind speed and variation of turbine blades to the power capacity generated by Vertical Axis Wind Turbine (VAWT) using NACA 2412 and to stratify the power capacity generated by the VAWT simulation. The research backgrounds are the wind-energy potential in Indonesia is about 9.290 MW and has already elaborated by Ministry of Mining, and Energy Resources is about 50 MW. This wind energy is environmentally (clean energy), economically (cheapest), easy to operate and easy to maintain, also renewable energy. The method of analysis is quantitative approach using two way classification (analysis of variance or design of experiments). The research variables are wind speed, variation of turbine blades and this interaction among independent variables and the power capacity as dependent variables. Data wind speed simulation vary from 3 m/s till 6 m/s. The quantity of turbine blades vary from 3 till 8 units. The finding from this research is accepted the null hypothesis or not differ significantly at 5% from each independent variable. The scenario and the parameters during the strategy development use turbine blades, wind speed and power generated by VAWT and the maximum power generated is 16.38 watt. The wind speed is 6 m/s and the number of turbine blade is 4 units. However, the minimum power generated by VAWT is 0.45 watt, the wind speed is 6 m/s and the number of turbine blade is 3 units.


2012 ◽  
Vol 512-515 ◽  
pp. 778-781 ◽  
Author(s):  
Hai Sheng Xin ◽  
Hai Jun Yue ◽  
Qiao Li Han

Different types of wind turbine generate different noises in normal condition. A comparison of noises from local spot by means of modern acoustic measurement is carried out between 300W concentrated wind energy turbine and ordinary wind energy turbine, and conclusion is that the noises from the concentrated wind energy turbine are lower than that from the ordinary one. Besides, the main noises are from turbine blades and increase with the wind speed on both turbines.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Author(s):  
J. V. Muruga Lal Jeyan ◽  
Akhila Rupesh ◽  
Jency Lal

The aerodynamic module combines the three-dimensional nonlinear lifting surface theory approach, which provides the effective propagated incident velocity and angle of attack at the blade section separately, and a two-dimensional panel method for steady axisymmetric and non-symmetric flow has to be involved to obtain the 3D pressure and velocity distribution on the wind mill model blade. Wind mill and turbines have become an economically competitive form of efficiency and renewable work generation. In the abroad analytical studies, the wind turbine blades to be the target of technological improvements by the use of highly possible systematic , aerodynamic and design, material analysis, fabrication and testing. Wind energy is a peculiar form of reduced form of density source of power. To make wind power feasible, it is important to optimize the efficiency of converting wind energy into productivity source. Among the different aspects involved, rotor aerodynamics is a key determinant for achieving this goal. There is a tradeoff between thin airfoil and structural efficiency. Both of which have a strong impact on the cost of work generated. Hence the design and analysis process for optimum design requires determining the load factor, pressure and velocity impact and optimum thickness distribution by finding the effect of blade shape by varying thickness on the basis of both the aerodynamic output and the structural weight.


Author(s):  
Salete Alves ◽  
Luiz Guilherme Vieira Meira de Souza ◽  
Edália Azevedo de Faria ◽  
Maria Thereza dos Santos Silva ◽  
Ranaildo Silva

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2319
Author(s):  
Hyun-Goo Kim ◽  
Jin-Young Kim

This study analyzed the performance decline of wind turbine with age using the SCADA (Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island in the southwestern sea of South Korea. Existing methods have generally attempted to estimate performance aging through long-term trend analysis of a normalized capacity factor in which wind speed variability is calibrated. However, this study proposes a new method using SCADA data for wind farms whose total operation period is short (less than a decade). That is, the trend of power output deficit between predicted and actual power generation was analyzed in order to estimate performance aging, wherein a theoretically predicted level of power generation was calculated by substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function, which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated to be −0.52%p/year.


Sign in / Sign up

Export Citation Format

Share Document