Study on Noise Characteristics of Concentrated Wind Energy Turbine

2012 ◽  
Vol 512-515 ◽  
pp. 778-781 ◽  
Author(s):  
Hai Sheng Xin ◽  
Hai Jun Yue ◽  
Qiao Li Han

Different types of wind turbine generate different noises in normal condition. A comparison of noises from local spot by means of modern acoustic measurement is carried out between 300W concentrated wind energy turbine and ordinary wind energy turbine, and conclusion is that the noises from the concentrated wind energy turbine are lower than that from the ordinary one. Besides, the main noises are from turbine blades and increase with the wind speed on both turbines.

2020 ◽  
Vol 17 (2) ◽  
pp. 69-72
Author(s):  
V. Кауаn ◽  

The results of studies on possibility of increasing efficiency in the use of wind energy and improving the dynamic characteristics of Darrieus wind turbine with straight blades are described. It is shown how the values of torque on the rotor shaft may be optimized by controlling the orientation of the turbine blades relative to the oncoming flow. Control of blades was provided with a cylindrical track of the special form in plan. The track form allowed to establish optimum angle of attack on each site of blade circular trajectory. It allowed to increase power coefficient Cp by 1.5 times and to reduce wind speed at which there is self-start of the wind turbine


2017 ◽  
Vol 7 (1.2) ◽  
pp. 246
Author(s):  
Bambang Sugiyono Agus Purwono ◽  
Masroni . ◽  
Awan Setiawan ◽  
Tundung Subali Patma ◽  
Ida Bagus Suardika

The objective of this paper is to simulate the effects upon the wind speed, variation of turbine blades and interaction of wind speed and variation of turbine blades to the power capacity generated by Vertical Axis Wind Turbine (VAWT) using NACA 2412 and to stratify the power capacity generated by the VAWT simulation. The research backgrounds are the wind-energy potential in Indonesia is about 9.290 MW and has already elaborated by Ministry of Mining, and Energy Resources is about 50 MW. This wind energy is environmentally (clean energy), economically (cheapest), easy to operate and easy to maintain, also renewable energy. The method of analysis is quantitative approach using two way classification (analysis of variance or design of experiments). The research variables are wind speed, variation of turbine blades and this interaction among independent variables and the power capacity as dependent variables. Data wind speed simulation vary from 3 m/s till 6 m/s. The quantity of turbine blades vary from 3 till 8 units. The finding from this research is accepted the null hypothesis or not differ significantly at 5% from each independent variable. The scenario and the parameters during the strategy development use turbine blades, wind speed and power generated by VAWT and the maximum power generated is 16.38 watt. The wind speed is 6 m/s and the number of turbine blade is 4 units. However, the minimum power generated by VAWT is 0.45 watt, the wind speed is 6 m/s and the number of turbine blade is 3 units.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Author(s):  
J. V. Muruga Lal Jeyan ◽  
Akhila Rupesh ◽  
Jency Lal

The aerodynamic module combines the three-dimensional nonlinear lifting surface theory approach, which provides the effective propagated incident velocity and angle of attack at the blade section separately, and a two-dimensional panel method for steady axisymmetric and non-symmetric flow has to be involved to obtain the 3D pressure and velocity distribution on the wind mill model blade. Wind mill and turbines have become an economically competitive form of efficiency and renewable work generation. In the abroad analytical studies, the wind turbine blades to be the target of technological improvements by the use of highly possible systematic , aerodynamic and design, material analysis, fabrication and testing. Wind energy is a peculiar form of reduced form of density source of power. To make wind power feasible, it is important to optimize the efficiency of converting wind energy into productivity source. Among the different aspects involved, rotor aerodynamics is a key determinant for achieving this goal. There is a tradeoff between thin airfoil and structural efficiency. Both of which have a strong impact on the cost of work generated. Hence the design and analysis process for optimum design requires determining the load factor, pressure and velocity impact and optimum thickness distribution by finding the effect of blade shape by varying thickness on the basis of both the aerodynamic output and the structural weight.


Author(s):  
Salete Alves ◽  
Luiz Guilherme Vieira Meira de Souza ◽  
Edália Azevedo de Faria ◽  
Maria Thereza dos Santos Silva ◽  
Ranaildo Silva

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2319
Author(s):  
Hyun-Goo Kim ◽  
Jin-Young Kim

This study analyzed the performance decline of wind turbine with age using the SCADA (Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island in the southwestern sea of South Korea. Existing methods have generally attempted to estimate performance aging through long-term trend analysis of a normalized capacity factor in which wind speed variability is calibrated. However, this study proposes a new method using SCADA data for wind farms whose total operation period is short (less than a decade). That is, the trend of power output deficit between predicted and actual power generation was analyzed in order to estimate performance aging, wherein a theoretically predicted level of power generation was calculated by substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function, which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated to be −0.52%p/year.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hashwini Lalchand Thadani ◽  
Fadia Dyni Zaaba ◽  
Muhammad Raimi Mohammad Shahrizal ◽  
Arjun Singh Jaj A. Jaspal Singh Jaj ◽  
Yun Ii Go

PurposeThis paper aims to design an optimum vertical axis wind turbine (VAWT) and assess its techno-economic performance for wind energy harvesting at high-speed railway in Malaysia.Design/methodology/approachThis project adopted AutoCAD and ANSYS modeling tools to design and optimize the blade of the turbine. The site selected has a railway of 30 km with six stops. The vertical turbines are placed 1 m apart from each other considering the optimum tip speed ratio. The power produced and net present value had been analyzed to evaluate its techno-economic viability.FindingsComputational fluid dynamics (CFD) analysis of National Advisory Committee for Aeronautics (NACA) 0020 blade has been carried out. For a turbine with wind speed of 50 m/s and swept area of 8 m2, the power generated is 245 kW. For eight trains that operate for 19 h/day with an interval of 30 min in nonpeak hours and 15 min in peak hours, total energy generated is 66 MWh/day. The average cost saved by the train stations is RM 16.7 mil/year with battery charging capacity of 12 h/day.Originality/valueWind energy harvesting is not commonly used in Malaysia due to its low wind speed ranging from 1.5 to 4.5 m/s. Conventional wind turbine requires a minimum cut-in wind speed of 11 m/s to overcome the inertia and starts generating power. Hence, this paper proposes an optimum design of VAWT to harvest an unconventional untapped wind sources from railway. The research finding complements the alternate energy harvesting technologies which can serve as reference for countries which experienced similar geographic constraints.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Bhavana Valeti ◽  
Shamim N. Pakzad

Rotor blades are the most complex structural components in a wind turbine and are subjected to continuous cyclic loads of wind and self-weight variation. The structural maintenance operations in wind farms are moving towards condition based maintenance (CBM) to avoid premature failures. For this, damage prognosis with remaining useful life (RUL) estimation in wind turbine blades is necessary. Wind speed variation plays an important role influencing the loading and consequently the RUL of the structural components. This study investigates the effect of variable wind speed between the cutin and cut-out speeds of a typical wind farm on the RUL of a damage detected wind turbine blade as opposed to average wind speed assumption. RUL of wind turbine blades are estimated for different initial crack sizes using particle filtering method which forecasts the evolution of fatigue crack addressing the non-linearity and uncertainty in crack propagation. The stresses on a numerically simulated life size onshore wind turbine blade subjected to the above wind speed loading cases are used in computing the crack propagation observation data for particle filters. The effects of variable wind speed on the damage propagation rates and RUL in comparison to those at an average wind speed condition are studied and discussed.


Author(s):  
Gustavo Adolfo Fajardo-Pulido ◽  
Juan Carlos Juan Carlos ◽  
Gerardo Fuster-Lopez

The characterization of wind speed in Cancun, Q. Roo Mexico, had as objectives: 1. To estimate the efficiency and energy produced by a 400W wind turbine at a height of 10 m; 2. To carry out the wind speed characterization. The methodology used was the Weibull distribution. In order to calculate the distribution of the wind speed, with the Wind Rose software we analyzed the energy in different directions and the calculation of potential wind energy based on Rayleigh's analysis. The results showed: that the power generated from the wind speed calculated in (PV) 2.8 m/s was 1.48 W, its capacity factor at 0.004 which does not reach the permissible range of 0.25 to 0.40; the energy produced annually was 14.02 kW/year, it is required to raise the wind turbine to 13.4 m, to reach 12 m/s speed and to be efficient to install a 400 W wind turbine. The paper identifies the preliminary activities and illustrates the method of calculation of wind characterization and energy produced to define the installation conditions of the wind turbine. It also contributes to the scientific advance by estimating the characterization of the wind in Cancun Quintana Roo, Mexico, for future wind turbine installations.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
René M. M. Slot ◽  
Lasse Svenningsen ◽  
John D. Sørensen ◽  
Morten L. Thøgersen

Wind turbines are subjected to fatigue loading during their entire lifetime due to the fluctuating excitation from the wind. To predict the fatigue damage, the design standard IEC 61400-1 describes how to parametrize an on-site specific wind climate using the wind speed, turbulence, wind shear, air density, and flow inclination. In this framework, shear is currently modeled by its mean value, accounting for neither its natural variance nor its wind speed dependence. This very simple model may lead to inaccurate fatigue assessment of wind turbine components, whose structural response is nonlinear with shear. Here we show how this is the case for flapwise bending of blades, where the current shear model leads to inaccurate and in worst case nonconservative fatigue assessments. Based on an optimization study, we suggest modeling shear as a wind speed dependent 60% quantile. Using measurements from almost one hundred sites, we document that the suggested model leads to accurate and consistent fatigue assessments of wind turbine blades, without compromising other main components such as the tower and the shaft. The proposed shear model is intended as a replacement to the mean shear, and should be used alongside the current IEC models for the remaining climate parameters. Given the large number of investigated sites, a basis for evaluating the uncertainty related to using a simplified statistical wind climate is provided. This can be used in further research when assessing the structural reliability of wind turbines by a probabilistic or semiprobabilistic approach.


Sign in / Sign up

Export Citation Format

Share Document