Omadacycline Tissue Penetration in Diabetic Patients With Wound Infections and Healthy Volunteers Via In Vivo Microdialysis

Author(s):  
2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Sean M. Stainton ◽  
Marguerite L. Monogue ◽  
Arlinda Baummer-Carr ◽  
Ashley K. Shepard ◽  
James F. Nugent ◽  
...  

ABSTRACT Herein, we present pharmacokinetic and tissue penetration data for oral tedizolid in hospitalized patients with diabetic foot infections (DFI) compared with healthy volunteers. Participants received oral tedizolid phosphate 200 mg every 24 h for 3 doses to achieve steady state. A microdialysis catheter was inserted into the subcutaneous tissue near the margin of the wound for patients or into thigh tissue of volunteers. Following the third dose, 12 blood and 14 dialysate fluid samples were collected over 24 h to characterize tedizolid concentrations in plasma and interstitial extracellular fluid of soft tissue. Mean ± standard deviation (SD) tedizolid pharmacokinetic parameters in plasma for patients compared with volunteers, respectively, were as follows: maximum concentration (C max), 1.5 ± 0.5 versus 2.7 ± 1.1 mg/liter (P = 0.005); time to C max (T max) (median [range]), 5.9 (1.2 to 8.0) versus 2.5 (2.0 to 3.0 h) (P = 0.003); half-life (t1/2), 9.1 ± 3.6 versus 8.9 ± 2.2 h (P = 0.932); and plasma area under the concentration-time curve for the dosing interval (AUC p ), 18.5 ± 9.7 versus 28.7 ± 9.6 mg · h/liter (P = 0.004). The tissue area under the concentration-time curve (AUC t ) for the dosing interval was 3.4 ± 1.5 versus 5.2 ± 1.6 mg · h/liter (P = 0.075). Tissue penetration median (range) was 1.1 (0.3 to 1.6) versus 0.8 (0.7 to 1.0) (P = 0.351). Despite lower plasma C max and delayed T max values for patients with DFI relative to healthy volunteers, the penetration into and exposure to tissue were similar. Based on available pharmacodynamic thresholds for tedizolid, the plasma and tissue exposures using the oral 200 mg once-daily regimen are suitable for further study in treatment of DFI.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Marguerite L. Monogue ◽  
Sean M. Stainton ◽  
Arlinda Baummer-Carr ◽  
Ashley K. Shepard ◽  
James F. Nugent ◽  
...  

ABSTRACT Ceftolozane-tazobactam displays potent activity against Gram-negative bacteria that can cause diabetic foot infections (DFI), making it an attractive treatment option when few alternatives exist. The pharmacokinetics and tissue penetration of ceftolozane-tazobactam at 1.5 g every 8 h (q8h) in patients (n = 10) with DFI were compared with those in healthy volunteers (n = 6) using in vivo microdialysis. In the patient participants, the median values of the pharmacokinetic parameters for ceftolozane in total plasma were as follows: maximum concentration (C max), 55.2 μg/ml (range, 40.9 to 169.3 μg/ml); half-life (t 1/2), 3.5 h (range, 2.3 to 4.7 h); and area under the concentration-time curve (AUC) from time zero to 8 h (AUC0–8), 191.6 μg · h/ml (range, 147.1 to 286.6 μg · h/ml). The median AUC for tissue (AUCtissue; where AUCtissue was the AUC0–8 for tissue for ceftolozane)/AUC for plasma for each antibiotic corrected by the fraction of free drug (fAUCplasma) was 0.75 (range, 0.35 to 1.00), resulting in a mean free time above 4 μg/ml (the Pseudomonas aeruginosa susceptibility breakpoint) in tissue of 99.8% (range, 87.5 to 100%). In the patient participants, the median values of the pharmacokinetic parameters for tazobactam in total plasma were as follows: C max, 14.2 μg/ml (range, 7.6 to 64.2 μg/ml); t 1/2, 2.0 h (range, 0.7 to 2.4 h); and AUC0–8, 27.1 μg · h/ml (range, 15.0 to 70.0 μg · h/ml). The AUCtissue (where AUCtissue was the AUC from time zero to the time of the last measureable concentration in tissue for tazobactam)/fAUCplasma for tazobactam was 1.18 (range, 0.54 to 1.44). In the healthy volunteers, the median values of the pharmacokinetic parameters for ceftolozane in total plasma were as follows: C max, 91.5 μg/ml (range, 65.7 to 110.7 μg/ml); t 1/2, 1.9 h (range, 1.6 to 2.1 h); and AUC0–8, 191.3 μg · h/ml (range, 118.1 to 274.3 μg · h/ml). The median AUCtissue/fAUCplasma was 0.87 (range, 0.54 to 2.20), resulting in a mean free time above 4 μg/ml in tissue of 93.8% (range, 87.5 to 100%). In the healthy volunteers, the median values of the pharmacokinetic parameters for tazobactam in total plasma were as follows: C max, 17.5 μg/ml (range, 15.4 to 27.3 μg/ml); t 1/2, 0.7 h (range, 0.6 to 0.8 h); and AUC0–8, 22.2 μg · h/ml (range, 19.2 to 36.4 μg · h/ml). The AUCtissue/fAUCplasma for tazobactam was 0.85 (range, 0.63 to 2.10). Both ceftolozane and tazobactam penetrated into subcutaneous tissue with exposures similar to those of free drug in plasma in both patients with DFI and healthy volunteers. These data suggest that ceftolozane-tazobactam at 1.5 g q8h can achieve the optimal exposure with activity against susceptible Gram-negative pathogens in the tissue of patients with DFI. (This study has been registered at ClinicalTrials.gov under identifier NCT02620774.)


2003 ◽  
Vol 47 (10) ◽  
pp. 3099-3103 ◽  
Author(s):  
Christian Joukhadar ◽  
Heino Stass ◽  
Ulrike Müller-Zellenberg ◽  
Edith Lackner ◽  
Florian Kovar ◽  
...  

ABSTRACT The present study addressed the ability of moxifloxacin to penetrate into healthy and inflamed subcutaneous adipose tissues in 12 patients with soft tissue infections (STIs). Penetration of moxifloxacin into the interstitial space fluid of healthy and inflamed subcutaneous adipose tissues was measured by use of in vivo microdialysis following administration of a single intravenous dosage of 400 mg in six diabetic and six nondiabetic patients with STIs. For the entire study population, the mean time-concentration profile of free moxifloxacin in plasma was identical to the time-concentration profile of free moxifloxacin in tissue (P was not significant). For healthy and inflamed adipose tissues for the diabetic subgroup, the mean moxifloxacin areas under the concentration-time curves (AUCs) from 0 to 8 h (AUC0-8s) were 8.1 ± 7.1 and 3.7 ± 1.9 mg·h/liter, respectively (P was not significant). The ratios of the mean AUC0-8 for inflamed tissue/AUC0-8 for free moxifloxacin in plasma were 0.5 ± 0.4 for diabetic patients and 1.2 ± 0.8 for nondiabetic patients (P was not significant). The ratios of the AUCs from 0 to 24 h for free moxifloxacin in plasma/MIC at which 90% of isolates are inhibited were >58 and 121 h for Streptococcus species and methicillin-sensitive Staphylococcus aureus, respectively. Concentrations of moxifloxacin effective against clinically relevant bacterial strains are reached in plasma and in inflamed and healthy adipose tissues. Thus, the pharmacokinetics of moxifloxacin in tissue and plasma support its use for the treatment of STIs in diabetic and nondiabetic patients.


2005 ◽  
Vol 49 (6) ◽  
pp. 2367-2371 ◽  
Author(s):  
Pejman Dehghanyar ◽  
Cornelia Bürger ◽  
Markus Zeitlinger ◽  
Florian Islinger ◽  
Florian Kovar ◽  
...  

ABSTRACT The present study tested the ability of linezolid to penetrate soft tissues in healthy volunteers. Ten healthy volunteers were subjected to linezolid drug intake at a dose of 600 mg twice a day for 3 to 5 days. The first dose was administered intravenously. All following doses were self-administered orally. The tissue penetration of linezolid was assessed by use of in vivo microdialysis. In the single-dose experiments the ratios of the area under the concentration-time curve from 0 to 8 h (AUC0-8) for tissue to the AUC0-8 for free plasma were 1.4 ± 0.3 (mean ± standard deviation) and 1.3 ± 0.4 for subcutaneous adipose and muscle tissue, respectively. After multiple doses, the corresponding mean ratios were 0.9 ± 0.2 and 1.0 ± 0.5, respectively. The ratios of the AUC from 0 to 24 h (AUC0-24) for free linezolid in tissues to the MIC were between 50 and 100 for target pathogens with MICs between 2 and 4 mg/liter. In conclusion, the present study showed that linezolid penetrates rapidly into the interstitial space fluid of subcutaneous adipose and skeletal muscle tissues in healthy volunteers. On the basis of pharmacokinetic-pharmacodynamic calculations, we suggest that linezolid concentrations in soft tissues can be considered sufficient to inhibit the growth of many clinically relevant bacteria.


2010 ◽  
Vol 54 (12) ◽  
pp. 5209-5213 ◽  
Author(s):  
Catharine C. Bulik ◽  
Dora E. Wiskirchen ◽  
Ashley Shepard ◽  
Christina A. Sutherland ◽  
Joseph L. Kuti ◽  
...  

ABSTRACT Tissue penetration of systemic antibiotics is an important consideration for positive outcomes in diabetic patients. Herein we describe the exposure profile and penetration of tigecycline in the interstitial fluid of wound margins versus that of uninfected thigh tissue in 8 adult diabetic patients intravenously (IV) administered 100 mg and then 50 mg of tigecycline twice daily for 3 to 5 doses. Prior to administration of the first dose, 2 microdialysis catheters were inserted into the subcutaneous tissue, the first within 10 cm of the wound margin and the second in the thigh of the same extremity. Samples for determination of plasma and tissue concentrations were simultaneously collected over 12 h under steady-state conditions. Tissue concentrations were corrected for percent in vivo recovery by the retrodialysis technique. Plasma samples were also collected for determination of protein binding at 1, 6, and 12 h postdose for each patient. Protein binding data were corrected using a fitted polynomial equation. The mean patient weight was 95.1 kg (range, 63.6 to 149.2 kg), the mean patient age was 63.5 ± 9.4 years, and 75% of the patients were males. The mean values for the plasma, thigh, and wound free area under the concentration-time curve from 0 to 24 h (fAUC0-24) were 2.65 ± 0.33, 2.52 ± 1.15, and 2.60 ± 1.02 μg·h/ml, respectively. Protein binding was nonlinear, with the percentage of free drug increasing with decreasing serum concentrations. Exposure values for thigh tissue and wound tissue were similar (P = 0.986). Mean steady-state tissue concentrations for the thigh and wound were similar at 0.12 ± 0.02 μg/ml, and clearance from the tissues appeared similar to that from plasma. Tissue penetration ratios (tissue fAUC/plasma fAUC) were 99% in the thigh and 100% in the wound (P = 0.964). Tigecycline penetrated equally well into wound and uninfected tissue of the same extremity.


2008 ◽  
Vol 52 (11) ◽  
pp. 3941-3946 ◽  
Author(s):  
Aryun Kim ◽  
Larry A. Suecof ◽  
Christina A. Sutherland ◽  
Lihong Gao ◽  
Joseph L. Kuti ◽  
...  

ABSTRACT Daptomycin is approved for the treatment of complicated skin and soft tissue infections, including diabetic wounds of the lower extremities, at a dose of 4 mg/kg of body weight once daily. For such localized tissue infections, drug concentrations in the interstitial space are an important determinant of successful therapy. In the diabetic population, peripheral arterial disease may limit antibiotic penetration into the target tissue. The objective of this study was to describe and compare the pharmacokinetic profiles of daptomycin in the interstitial fluid of soft tissues in diabetic and healthy volunteers by using in vivo microdialysis. Twelve subjects (six diabetic and six healthy) received a single 4-mg/kg dose of daptomycin intravenously. Samples of plasma and tissue were simultaneously collected over 24 h. Diabetic and healthy groups were matched in mean age (±10 years), gender ratio, mean weight (±10 kg), and creatinine clearance rate (±20 ml/min/1.73 m2). Pharmacokinetic parameters for plasma were similar between groups (P > 0.05). The mean peak drug concentrations ± standard deviations in tissue were 4.3 ± 3.3 μg/ml and 3.8 ± 1.4 μg/ml for diabetic and healthy subjects, respectively. The degree of tissue penetration, defined as the ratio of the area under the free drug concentration-time curve for tissue to that for plasma, was 0.93 ± 0.61 for diabetic subjects and 0.74 ± 0.09 for healthy subjects (P = 0.46). Daptomycin at 4 mg/kg penetrated well into the soft tissue, reaching concentrations approximately 70 to 90% of those of the free drug in plasma. Moreover, these free, bioactive concentrations in tissue exceeded the MICs for staphylococci and streptococci over the 24-h dosing interval.


1992 ◽  
Vol 15 (1) ◽  
pp. 55-61 ◽  
Author(s):  
F.J. Schmidt ◽  
A.L. Aalders ◽  
A.J.M. Schoonen ◽  
H. Doorenbos

Calibration of glucose sensors proved difficult for electrodes with immobilized glucose-oxidase. The correlation between the sensitivity of the electrodes in vitro and in vivo appeared to be poor. We developed a new type of glucose sensor, based on a microdialysis system, in which an oxygen electrode is used as detector outside the body and the enzyme glucose-oxidase dissolved in water is used as a dynamic selector. The enzyme solution is pumped through a hollow fiber placed subcutaneously, before the fluid passes the detector. The glucose sensor was tested in the subcutaneous abdominal tissue of 12 healthy volunteers and 12 type I diabetic patients. Blood glucose was clamped at two levels to permit a two-point calibration of the sensor in vivo. These values correlated well with the in vitro calibration factors (r=0.949). In subcutaneous tissue the sensor measures 43 ± 9% of the blood glucose value, using the in vitro calibration factor. No differences were detected between healthy volunteers and diabetic patients.


1987 ◽  
Vol 57 (02) ◽  
pp. 201-204 ◽  
Author(s):  
P Y Scarabin ◽  
L Strain ◽  
C A Ludlam ◽  
J Jones ◽  
E M Kohner

SummaryDuring the collection of samples for plasma β-thromboglobulin (β-TG) determination, it is well established that artificially high values can be observed due to in-vitro release. To estimate the reliability of a single β-TG measurement, blood samples were collected simultaneously from both arms on two separate occasions in 56 diabetic patients selected for a clinical trial. From each arm, blood was taken into two tubes containing an anticoagulant mixture with (tube A) and without (tube B) PGE!. The overall mean value of B-TG in tube B was 1.14 times higher than in tube A (p <0.01). The markedly large between-arms variation accounted for the most part of within-subject variation in both tubes and was significantly greater in tube B than in tube A. Based on the difference between B-TG values from both arms, the number of subjects with artifically high B-TG values was significantly higher in tube B than in tube A on each occasion (overall rate: 28% and 14% respectively). Estimate of between-occasions variation showed that B-TG levels were relatively stable for each subject between two occasions in each tube. It is concluded that the use of PGEi decreases falsely high B-TG levels, but a single measurement of B-TG does not provide a reliable estimate of the true B-TG value in vivo.


1972 ◽  
Vol 27 (01) ◽  
pp. 114-120 ◽  
Author(s):  
A. A Hassanein ◽  
Th. A El-Garf ◽  
Z El-Baz

SummaryADP-induced platelet aggregation and calcium-induced platelet aggregation tests were studied in 14 diabetic patients in the fasting state and half an hour after an intravenous injection of 0.1 unit insulin/kg body weight. Platelet disaggregation was significantly diminished as compared to a normal control group, and their results were negatively correlated with the corresponding serum cholesterol levels. Insulin caused significant diminution in the ADP-induced platelet aggregation as a result of rapid onset of aggregation and disaggregation. There was also a significant increase in platelet disaggregation. In the calcium-induced platelet aggregation test, there was a significant shortening of the aggregation time, its duration, and the clotting time. The optical density fall due to platelet aggregation showed a significant increase. Insulin may have a role in correcting platelet disaggregation possibly through improvement in the intracellular enzymatic activity.


Sign in / Sign up

Export Citation Format

Share Document