scholarly journals Measurement and visualization technique of electric conductivity, dielectric constant, thermal conductivity, and thermal diffusibility

2002 ◽  
Vol 22 (1Supplement) ◽  
pp. 149-152
Author(s):  
Chikayoshi Sumi
2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


Author(s):  
Mazmul Hussain ◽  
Nargis Khan

The variable nature of the thermal conductivity of nanofluid with respect to temperature plays an important role in many engineering and industrial applications including solar collectors and thermoelectricity. Thus, the foremost motivation of this article is to investigate the effects of thermal conductivity and electric conductivity due to variable temperature on the flow of Williamson nanofluid. The flow is considered between two stretchable rotating disks. The mathematical modeling and analysis have been made in the presence of magnetohydrodynamic and thermal radiation. The governing differential equations of the problem are transformed into non-dimensional differential equations by using similarity transformations. The transformed differential equations are thus solved by a finite difference method. The behaviors of velocity, temperature and concentration profiles due to various parameters are discussed. For magnetic parameter, the radial and tangential velocities have showed decreasing behavior, while converse behavior is observed for axial velocity. The temperature profile shows increasing behavior due to an increase in the Weissenberg number, heat generation parameter and Eckert number, while it declines by increasing electric conductivity parameter. The nanoparticle concentration profile declines due to an increase in the Lewis number and Reynolds number.


2021 ◽  
Vol 36 (4) ◽  
pp. 417-422
Author(s):  
Y. Hamid ◽  
P. Svoboda

Abstract Ethylene-butene copolymer (EBC)/carbon-fiber (CF) composites can be utilized as an electromechanical material due to their ability to change electric resistance with mechanical strain. The electro-mechanical properties and thermal conductivity of ethylene butene copolymer (EBC) composites with carbon fibers were studied. Carbon fibers were introduced to EBC with various concentrations (5 to 25 wt%). The results showed that carbon fibers’ addition to EBC improves the electric conductivity up to 10 times. Increasing the load up to 2.9 MPa will raise the electric resistance change by 4 500% for a 25% fiber sample. It is also noted that the EBC/CF composites’ electric resistance underwent a dramatic increase in raising the strain. For example, the resistance change was around 13 times higher at 15% strain compared to 5% strain. The thermal conductivity tests showed that the addition of carbon fibers increases the thermal conductivity by 40%, from 0.19 to 0.27 Wm–1K–1.


2014 ◽  
Vol 1040 ◽  
pp. 245-249
Author(s):  
Aleksander S. Ivashutenko ◽  
Alexandr V. Kabyshev ◽  
Nikita Martyushev ◽  
Igor G. Vidayev

The article focuses on the investigation of the properties of alumina-zirconia ceramics possessing high mechanical characteristics and good conductivity at high temperatures. Measurement results of the dielectric dissipation factor, dielectric constant, electric conductivity when using direct and alternating current for the ceramics samples of 80%(ZrO2-3%Y2O3)-20% Al2O3 composition are presented in the paper. Measurements were conducted simultaneously in the electrostatic field in vacuum while heating the samples to the temperatures ranging from 300 to 1700K. Investigations showed that alumina-zirconia ceramics at high temperatures obtains ferroelectric properties not typical of these structures.


2006 ◽  
Vol 929 ◽  
Author(s):  
Bangke Zheng ◽  
S. Budak ◽  
C. Muntele ◽  
Z. Xiao ◽  
S. Celaschi ◽  
...  

ABSTRACTWe made p-type nanoscale super lattice thermoelectric cooling devices which consist of multiple periodic layers of Si1−x Gex / Si, The thickness of each layer ranges between 10 and 50 nm. The super lattice was bombarded by 5 MeV Si ion with different fluencies aiming to form nano-cluster quantum dot structures. We estimated the thermo-electric efficiency of the so fabricated devices, measuring the thin film cross plane thermal conductivity by the 3rd harmonic method, measuring the cross plane Seebeck coefficient, and finally measuring the cross plane electric conductivity before and after ion bombardment. As predicted, the thermo-electric Figure of Merit of the films increases with increasing Si ion fluencies. In addition to the effect of quantum well confinement of the phonon transmission, the nano-scale crystal quantum dots produced by the incident Si beam further adversely affects the thermal conductivity by absorbing and dissipating phonon along the lattice, and therefore further reduces the cross plane thermal conductivity, This process increases the electron density of state therefore increasing Seebeck coefficient, and the electric conductivity.


1878 ◽  
Vol 28 (3) ◽  
pp. 717-740 ◽  
Author(s):  
Tait

The following paper contains the results of an inquiry which has occupied me at intervals for somewhere about ten years. It was carried out in part at the expense of the British Association, and I have already reported results to that body in 1869 and 1871. But these provisional reports referred to very short ranges of temperature only, and the experiments were made with faulty thermometers, for which I had not the corrections which had been carefully determined by Welsh at Kew.The inquiry arose from my desire to extend to other metals the very beautiful and original method which Principal Forbes devised, and which the state of his health prevented him from applying to any substance but iron. Forbes' experiments gave a result so very remarkable, and (as it seemed to me) so theoretically suggestive, that I wished to extend them to other pure metals, and also, in one or two cases at least, to alloys.I believe that Principal Forbes had at least two reasons for undertaking his investigations:—(1.) When he commenced his inquiry, there was no really accurate or trustworthy determination of the absolute conductivity of any body whatever for heat. (2.) FORBES had himself, in 1833 and subsequent years, pointed out a very remarkable analogy between the conducting powers of metals for electricity and for heat, and had shown that these were almost precisely proportional to one another—that is to say, that the list of the average relative conductivities of different metals for electricity differed, from that of their relative conductivities with regard to heat, certainly not more than did the several electric lists furnished by different experimenters, and certainly less than the corresponding thermal lists. Hence it was natural to suppose that temperature might have a marked effect on thermal conductivity, as it was known to have such an effect on electric conductivity.


RSC Advances ◽  
2015 ◽  
Vol 5 (13) ◽  
pp. 9432-9440 ◽  
Author(s):  
Guolin Hou ◽  
Benli Cheng ◽  
Fei Ding ◽  
Mingshui Yao ◽  
Yuebin Cao ◽  
...  

Nanocomposites with high thermal conductivity and large dielectric constant incorporated with Si nanospheres prepared by thermal plasma are reported.


1872 ◽  
Vol 7 ◽  
pp. 308-309 ◽  
Author(s):  
Tait

In a paper presented to the Society in 1867–8 I deduced from certain hypothetical considerations regarding Dissipation of Energy results connected with the thermal and electric conductivity of bodies, the electric convection of heat, &c. As these were all of a confessedly somewhat speculative character, I printed at the time only that connected with thermal conductivity, which I had the means of comparing with experiment, and which seemed to accord fairly with Forbes' experimental results. But the assumption on which this was based was essentially involved in all the other portions of the paper.


Sign in / Sign up

Export Citation Format

Share Document