scholarly journals Magnetic and spectrometric studies of Al-Gor area, Southwestern Sinai, Egypt

2021 ◽  
Vol 51 (3) ◽  
pp. 207-223
Author(s):  
Mostafa A. M. ZAEIMAH

Al-Gor area is a part of Southwestern Sinai of Egypt. It is considered as one of the most promising areas for mineralization in Egypt, being rich in many mineral deposits of: manganese, iron, copper, zinc, lead, cobalt, nickel, silver, gibbsite, and uranium. Besides, some industrial ore minerals such as kaolin and glass sand,… etc. are also found in this area. The area was studied by Gama-ray spectrometry to trace the radioactive anomalies, their concentrations and their relationship to the existing rocks, and by magnetic survey to study the relationship of radioactive anomalies and their trends with the trends of geological structures. The gamma-ray spectrometric maps show different levels over the surveyed area, which reflect contrasting radioelement contents for the exposed various rock types. The highest radiospectrometric levels are located in the northwest southeast direction and some scattered parts all over the study area. They are mainly associated with Um-Bogma Formation, bearing gibbsite. The study area possesses radiospectrometric ranging between 0.6 and 110.9 Ur as a total-count, 0.1 to 1.8 % for K, 0.1 to 99 ppm for eU and 0.1 to 23 ppm for eTh. The qualitative analyses of magnetic data show the existences of a number of different magnetic anomalies, with different amplitudes and frequencies as well as trends. From the application of spectral analyses of magnetic data, the regional and residual depths of magnetic anomalies can be computed. The first depth represents the regional (deep-seated) anomalies, at about 75 m and the residual (shallow-seated) anomalies, at about 20 m. The trends of the structures as derived from the spectrometric and ratio maps correspond to those inferred from the residual-component magnetic map, which reflects the effect of structures on the concentration of radioactive elements and, consequently mineralization.

Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. K1-K9 ◽  
Author(s):  
Vinicius Hector Abud Louro ◽  
Marta Silvia Maria Mantovani ◽  
Vanessa Biondo Ribeiro

The Morro do Leme laterite nickel deposit lies inside the western border of the Parecis Basin (Brazil). This deposit is characterized by high concentrations of lateritic Ni (about 1.8%) and anomalous contents of Pd, Au, Cu, Na, Co, Zn, and Pt in a peridotite and dunite layered intrusion. Besides the existence of geochemical and drilling data, the 3D distribution in the subsurface of this layered intrusion is still unknown. An airborne magnetic survey revealed three east–west elongated magnetic anomalies, characterized by a significant remanent magnetization. The sources of these anomalies were delimitated laterally and had their depths estimated between 90 and 150 m, using techniques that use derivatives. Further, the total magnetization direction was obtained from a distortion analysis of the magnetic anomalies. All these data were united in an initial model for the 3D inversion of the magnetic data. The total and induced magnetization directions were attributed to the inverted model of 0.12 (SI) susceptibility, allowing indirect estimation of the remanence. The model, defined by the depth, the inversion, and the remanence estimates, linked the intrusion to analogue events in the Rondonian-San Ignácio Province. The results indicated that to explore for laterite Ni, the best locations are the southern part of the main anomaly and in the cover above the two smaller anomalies, whereas to explore for Pd, Au, Cu, Na, Co, Zn, and/or Pt, the indicated region is the central portion of the main anomaly.


Geophysics ◽  
1979 ◽  
Vol 44 (8) ◽  
pp. 1395-1416 ◽  
Author(s):  
James C. Macnae

This paper discusses geophysical prospecting techniques for kimberlite pipes, a major source of diamonds. A simple geologic model based on descriptions by Hawthorne (1975) and Nixon (1973) is given, and the varied geophysical responses obtained over kimberlite pipes are interpreted in terms of this model. The three main factors controlling these responses are the original size and inhomogeneity of the pipe, the depth of erosion, and the degree of weathering. Kimberlite pipes are roughly elliptical in surface exposure in most cases, with a “carrot shaped” extension at depth. The unweathered portion of the pipe generally contains a few percent magnetite, and this in most cases produces a clearly detectable magnetic anomaly. The presence of deep weathering may alter the magnetite in the top of the pipe to nonmagnetic oxides of iron, thus resulting in an increased depth to the magnetic source. If this depth is large, the magnetic response may not be large enough to detect the kimberlite in the presence of noise and the effect of other structures. In addition, if little erosion has taken place since emplacement, kimberlitic sediments known as epiclastic kimberlite will be present to considerable depths in the pipe, and this may also lead to the absence of a clear magnetic anomaly. In one large survey in South Africa, electromagnetic (EM) techniques have proven to be remarkably effective in detecting the presence of weathered clays or epiclastic kimberlite contained within the pipes. All pipes discovered during this survey had unmistakable EM signatures, while five out of eight had very small magnetic anomalies which would not likely have been selected as potential targets on the basis of magnetic data alone. These examples would indicate that in any area where deep weathering is expected, an EM survey is essential in combination with a magnetic survey if reconnaissance is to be based on airborne geophysical techniques. Due to the emplacement mechanism of kimberlite, considerable inhomogeneity within a pipe may be present, leading to significant variation in the response of any geophysical technique to one pipe, with resultant interpretation difficulties. Although this is not a limitation in the discovery of new pipes, it does make their geophysical delimitation difficult.


2019 ◽  
Vol 37 (3) ◽  
pp. 309
Author(s):  
Adolfo Silva ◽  
Tiago Duque ◽  
Felipe Alves

ABSTRACTThis study was performed to identify magnetic structures in depth and radiometric responses within and around Morro Feio Ultramafic Complex (MFUC) from the airborne geophysical (gamma–ray spectrometry and magnetic) data. Using processing techniques and profiles analysis, we have found eight gamma–ray spectrometry signatures and twenty–seven magnetic anomalies. The radiometric signatures are basically characterized by a K and eU relative enrichment in detriment eTh, with two of these signatures also characterized by K relative enrichment in detriment eU. Based on published works, we have interpreted the radiometric responses may be from serpentinite and possible areas with hydrothermal alterations. Regarding the magnetic anomalies, we concluded that the shallowest may be the magnetic responses of dikes, contact zones and other structures, while the deepest have sources with more complex geometries and are concentrated in central–western of MFUC, where the participation of Pt is larger. In this aspect, our results reinforce the arguments favorable to existence of Pt, Cr and Ni primary sources in depth.Keywords: mineral research, airborne geophysical, serpentinites, hydrothermal alteration.RESUMOEste estudo foi realizado com o objetivo de identificar estruturas magnéticas em profundidade e respostas radiométricas dentro e no entorno do Complexo Ultramáfico de Morro Feio (CUMF) a partir de dados aerogeofísicos (gamaespectrometria e magnetometria aérea). Utilizando técnicas de processamento e análise de perfis, encontramos oito assinaturas gamaespectrométrica e vinte e sete anomalias magnéticas. As assinaturas radiométricas caracterizam–se basicamente por um enriquecimento relativo de K e eU em detrimento eTh, com duas dessas assinaturas também sendo caracterizadas pelo enriquecimento relativo de K em detrimento eU. Com base em trabalhos publicados, interpretamos que as respostas radiométricas podem ser em virtude do serpentinito e possíveis áreas com alterações hidrotermais. Com relação às anomalias magnéticas, concluímos que as mais rasas podem ser as respostas magnéticas de diques, zonas de contato e outras estruturas, enquanto que as mais profundas possuem fontes com geometrias mais complexas e se concentram no centro–oeste do CUMF, onde a participação de Pt é maior. Neste aspecto, nossos resultados reforçam os argumentos favoráveis a existência de fontes primárias de Pt, Cr e Ni em profundidade.Palavras-chave: pesquisa mineral, aerogeofísica, serpentinitos, alteração hidrotermal.


1995 ◽  
Vol 7 (2) ◽  
pp. 149-157 ◽  
Author(s):  
Emanuele Bozzo ◽  
Giorgio Caneva ◽  
Giovanni Capponi ◽  
Alessandro Colla

A magnetic survey was carried out in the area between Lady Newnes Bay and Evans Névé (northern Victoria Land), to ascertain whether the contact between the Wilson and the Bowers terranes could be identified remotely. The survey consisted of three ground and 12 helicopter-borne profiles. The method was calibrated on the southernmost profiles, which cover a well-exposed section of the contact between the Wilson and Bowers terranes. The northern profiles were located in an area where the contact is poorly constrained by outcrops, so that it could be tested whether the junction displays a magnetic signature. The magnetic data and the 2.5-D modeling of three selected profiles indicate that no easily recognizable magnetic signature defines this contact. The main features of the area are magnetic anomalies probably controlled by the “Meander Intrusives” and the McMurdo volcanic rocks, both characterized by high susceptibility values. If an anomaly related to the contact exists, then it is probably masked by these stronger anomalies.


Author(s):  
Thorkild M. Rasmussen ◽  
Leif Thorning

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Rasmussen, T. M., & Thorning, L. (1999). Airborne geophysical surveys in Greenland in 1998. Geology of Greenland Survey Bulletin, 183, 34-38. https://doi.org/10.34194/ggub.v183.5202 _______________ Airborne geophysical surveying in Greenland during 1998 consisted of a magnetic project referred to as ‘Aeromag 1998’ and a combined electromagnetic and magnetic project referred to as ‘AEM Greenland 1998’. The Government of Greenland financed both with administration managed by the Geological Survey of Denmark and Greenland (GEUS). With the completion of the two projects, approximately 305 000 line km of regional high-resolution magnetic data and approximately 75 000 line km of detailed multiparameter data (electromagnetic, magnetic and partly radiometric) are now available from government financed projects. Figure 1 shows the location of the surveyed areas with highresolution geophysical data together with the area selected for a magnetic survey in 1999. Completion of the two projects was marked by the release of data on 1 March, 1999. The data are included in the geoscientific databases at the Survey for public use; digital data and maps may be purchased from the Survey.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1092
Author(s):  
Brian R. Page ◽  
Reeve Lambert ◽  
Nina Mahmoudian ◽  
David H. Newby ◽  
Elizabeth L. Foley ◽  
...  

This paper presents results from the integration of a compact quantum magnetometer system and an agile underwater glider for magnetic survey. A highly maneuverable underwater glider, ROUGHIE, was customized to carry an increased payload and reduce the vehicle’s magnetic signature. A sensor suite composed of a vector and scalar magnetometer was mounted in an external boom at the rear of the vehicle. The combined system was deployed in a constrained pool environment to detect seeded magnetic targets and create a magnetic map of the test area. Presented is a systematic magnetic disturbance reduction process, test procedure for anomaly mapping, and results from constrained operation featuring underwater motion capture system for ground truth localization. Validation in the noisy and constrained pool environment creates a trajectory towards affordable littoral magnetic anomaly mapping infrastructure. Such a marine sensor technology will be capable of extended operation in challenging areas while providing high-resolution, timely magnetic data to operators for automated detection and classification of marine objects.


2018 ◽  
Vol 14 (2) ◽  
pp. 15-28
Author(s):  
A A ALABI ◽  
O OLOWOFELA

Airborne magnetic data covering geographical latitudes of 7000‟N to 7030‟N and longitudes of 3 30′E to 4 00′E within Ibadan area were obtained from Nigeria Geology Survey Agency. The data were ana-lyzed to map the sub surface structure and the source parameters were deduced from the quantitative and qualitative interpretation of magnetic data. The upward continuation technique was used to de-emphasize short – wavelength anomaly while the depth to magnetic sources in the area was deter-mined using local wavenumber technique, the analytic signal was also employed to obtain the depths of the magnetic basement. Analysis involving the local wavenumber, upward continuation and appar-ent magnetic susceptibility techniques significantly improves the interpretation of magnetic data in terms of delineating the geological structure, source parameter and magnetic susceptibility within Iba-dan area.. These depth ranges from 0.607km to 2.48km. The apparent susceptibility map at the cut-off wavelength of 50 m ranges from -0.00012 to 0.00079 which agree with the susceptibility value of some rock types; granite gneiss, migmatite biotite gneiss, biotite muscovite granite, hornblende granite, quartz and schists. The result of the local wavenumber suggests variation along the profiles in the surface of magnetic basement across the study area.


2021 ◽  
Vol 20 (2) ◽  
pp. 99-106
Author(s):  
O.I. Popoola ◽  
O.A. Adenuga ◽  
E.O. Joshua

The geological map of the old western region of Nigeria indicates the presence of iron ore deposit at Iboro village Ogun state (7.9983o - 7.99933o N, 3.5790o - 3.5890o E). Hence a ground magnetic survey was carried out at a location at Iboro village so as to delineate the subsurface magnetic anomalies and to know whether the anomalies favour accumulation of magnetic minerals. The survey was carried out using high resolution proton precession magnetometer model G-856X. Eight traverses were run at 5m separations and earth magnetic intensity values were measured at 10m intervals along each traverse; the acquired data were corrected for drift. The residual anomalies obtained by removal of regional gradient from observed data using trend analysis were presented as profiles and maps. The treated data were qualitatively and quantitatively interpreted and the results gave values for the total ground magnetic anomalies that varied between a minimum and maximum peak values of about -33.0 and 30.6nT respectively. Depth to the basement rock was estimated using Peter’s half slope method which gave a maximum depth of about 13m. The contour maps and the total relative graphs present the subsurface picture of the geological structure that is assumed to harbour the metallic minerals through the action of the field towards the concentration of anomalies. It was suspected that the overburden was relatively thin in the study area and the minerals were at a shallow depth.


Geophysics ◽  
1984 ◽  
Vol 49 (9) ◽  
pp. 1549-1553 ◽  
Author(s):  
J. O. Barongo

The concept of point‐pole and point‐dipole in interpretation of magnetic data is often employed in the analysis of magnetic anomalies (or their derivatives) caused by geologic bodies whose geometric shapes approach those of (1) narrow prisms of infinite depth extent aligned, more or less, in the direction of the inducing earth’s magnetic field, and (2) spheres, respectively. The two geologic bodies are assumed to be magnetically polarized in the direction of the Earth’s total magnetic field vector (Figure 1). One problem that perhaps is not realized when interpretations are carried out on such anomalies, especially in regions of high magnetic latitudes (45–90 degrees), is that of being unable to differentiate an anomaly due to a point‐pole from that due to a point‐dipole source. The two anomalies look more or less alike at those latitudes (Figure 2). Hood (1971) presented a graphical procedure of determining depth to the top/center of the point pole/dipole in which he assumed prior knowledge of the anomaly type. While it is essential and mandatory to make an assumption such as this, it is very important to go a step further and carry out a test on the anomaly to check whether the assumption made is correct. The procedure to do this is the main subject of this note. I start off by first using some method that does not involve Euler’s differential equation to determine depth to the top/center of the suspected causative body. Then I employ the determined depth to identify the causative body from the graphical diagram of Hood (1971, Figure 26).


Sign in / Sign up

Export Citation Format

Share Document