ESTIMATION OF SOURCE PARAMETERS IN IBADAN, SOUTH – WESTERN NIGERIA USING DIGITIZED AEROMAGNETIC DATA

2018 ◽  
Vol 14 (2) ◽  
pp. 15-28
Author(s):  
A A ALABI ◽  
O OLOWOFELA

Airborne magnetic data covering geographical latitudes of 7000‟N to 7030‟N and longitudes of 3 30′E to 4 00′E within Ibadan area were obtained from Nigeria Geology Survey Agency. The data were ana-lyzed to map the sub surface structure and the source parameters were deduced from the quantitative and qualitative interpretation of magnetic data. The upward continuation technique was used to de-emphasize short – wavelength anomaly while the depth to magnetic sources in the area was deter-mined using local wavenumber technique, the analytic signal was also employed to obtain the depths of the magnetic basement. Analysis involving the local wavenumber, upward continuation and appar-ent magnetic susceptibility techniques significantly improves the interpretation of magnetic data in terms of delineating the geological structure, source parameter and magnetic susceptibility within Iba-dan area.. These depth ranges from 0.607km to 2.48km. The apparent susceptibility map at the cut-off wavelength of 50 m ranges from -0.00012 to 0.00079 which agree with the susceptibility value of some rock types; granite gneiss, migmatite biotite gneiss, biotite muscovite granite, hornblende granite, quartz and schists. The result of the local wavenumber suggests variation along the profiles in the surface of magnetic basement across the study area.

Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. B147-B156 ◽  
Author(s):  
Madeline D. Lee ◽  
William A. Morris ◽  
Hernan A. Ugalde

In situ magnetic-susceptibility measurements are only possible on outcrops, which are often limited by overburden and water bodies. An alternative approach is to derive an apparent susceptibility map from total-magnetic-intensity (TMI) surveys, which was done in this study for the Eye-Dashwa Lakes pluton near Atikokan, Ontario. Susceptibility logs of cores directly link alteration to systematic changes in the amount and composition of magnetic minerals. The surficial distribution of alteration zones was originally estimated from a limited number of in situ magnetic-susceptibility measurements. Here, through forward modeling of the TMI data set, susceptibility data are used to validate the apparent susceptibility data set. The modeling accounts for the bathymetric surface of all lakes that cover the area. A two-step process of bulk and local-scale modeling was used to estimate apparent susceptibility patterns. Bulk magnetic susceptibility is used as an indicator of overall alteration content, and local-scale apparent magnetic-susceptibility values are computed using a forward-modeling routine. The new apparent magnetic data set indicates northwest and northeast linears, which are the same as those seen in previous studies.


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Maysam Abedi

The presented work examines application of an Augmented Iteratively Re-weighted and Refined Least Squares method (AIRRLS) to construct a 3D magnetic susceptibility property from potential field magnetic anomalies. This algorithm replaces an lp minimization problem by a sequence of weighted linear systems in which the retrieved magnetic susceptibility model is successively converged to an optimum solution, while the regularization parameter is the stopping iteration numbers. To avoid the natural tendency of causative magnetic sources to concentrate at shallow depth, a prior depth weighting function is incorporated in the original formulation of the objective function. The speed of lp minimization problem is increased by inserting a pre-conditioner conjugate gradient method (PCCG) to solve the central system of equation in cases of large scale magnetic field data. It is assumed that there is no remanent magnetization since this study focuses on inversion of a geological structure with low magnetic susceptibility property. The method is applied on a multi-source noise-corrupted synthetic magnetic field data to demonstrate its suitability for 3D inversion, and then is applied to a real data pertaining to a geologically plausible porphyry copper unit.  The real case study located in  Semnan province of  Iran  consists  of  an arc-shaped  porphyry  andesite  covered  by  sedimentary  units  which  may  have  potential  of  mineral  occurrences, especially  porphyry copper. It is demonstrated that such structure extends down at depth, and consequently exploratory drilling is highly recommended for acquiring more pieces of information about its potential for ore-bearing mineralization.


2021 ◽  
Author(s):  
Oliver Dixon ◽  
William McCarthy ◽  
Nasser Madani ◽  
Michael Petronis ◽  
Steve McRobbie ◽  
...  

<p>Copper is one of the most important critical metal resources needed to achieve carbon neutrality with a projected increase in demand of >300% over the next half century from electronics and renewables.  Porphyry deposits account for most of the global copper production, but the discovery of new reserves is ever more challenging. Machine learning presents an opportunity to cross reference new and traditionally under-utilised data sets with a view to developing quantitative predictive models of hydrothermal alteration zones to guide new, ambitious exploration programs.</p><p>The aim of this study is to demonstrate a new alteration classification scheme driven by quantitative magnetic and spectral data to feed a machine learning algorithm. The benefits of an alteration model based on quantitative data rather than subjective observations by geologists, are that there is no bias in the data collected, the arising model is quantifiable and therefore easy to model and the process be fully automated. Ultimately, this approach aids more detailed exploration and mine modelling, in turn, reducing the extraction process carbon footprint and more effectively identifying new deposits.</p><p>Presented here are magnetic susceptibility and shortwave infrared (SWIR) data collected from the KazMinerals plc. owned Aktogay Cu-Mo giant porphyry deposit, eastern Kazakhstan, which has a throughput of 30Mtpa of ore. These data are cross referenced using a newly developed machine learning algorithm. Generated autonomously, our results reveal twelve statistically and geologically significant clusters that define a new alteration classification for porphyry style mineralisation. Results are entirely non-subjective, reproducible, quantitative and modellable.</p><p>Importantly, magnetic susceptibility measurements improve the algorithm’s ability to identify clusters by between 29-36%; enhancing the sophistication of the included magnetic data promises to yield substantially better statistical results. Magnetic remanence data are therefore being complied on representative samples from each of the twelve identified clusters, including hysteresis, isothermal remanent magnetisation (IRM) acquisition, FORC measurements, natural remanent magnetisation (NRM) and anhysteretic remanent magnetisation (ARM). Through collaboration with industry partners, we aim to develop an automated means of collecting these magnetic remanence data to accompany the machine learning algorithm.</p>


1985 ◽  
Vol 63 (5) ◽  
pp. 1111-1117 ◽  
Author(s):  
John S. Haynes ◽  
Katherine W. Oliver ◽  
Robert C. Thompson

Phosphinates of copper(II) of the type Cu(R2PO2)2 where R is n-octyl, n-decyl, and n-dodecyl have been synthesized and characterized by differential scanning calorimetry, vibrational and electronic spectroscopy, and variable temperature (300 to 4.2 K) magnetic susceptibility studies. Each of these compounds was obtained in distinct α and β structural forms. All materials appear to have the double phosphinate bridged extended chain structure and the magnetic data have been successfully analyzed according to the isotropic Heisenberg model for linear chains. The α forms exhibit antiferromagnetic behaviour with J values of −25, −29, and −29 cm−1 for the octyl, decyl, and dodecyl derivatives respectively. The β forms are ferromagnetic and have corresponding J values of 1.8, 2.1, and 2.3 cm−1 respectively. Magneto-structural correlations in these extended chain coordination polymers are discussed.


KURVATEK ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 25-33
Author(s):  
Fatimah Fatimah

Tulakan Subdistrict, Pacitan Regency, East Java Province. This area is part of the Southern Mountain Zone of East Java, which is the Sunda-Banda magmatic arc of Oligo-Miocene age, where there are alterations and indications of valuable ore minerals. Field magnetic data is taken in an area of 1 x 1 km, with the looping method on the grid trajectory within 200 x 100 m. Then, magnetic data correction and data processing were carried out with Oasis Montaj. From the magnetic anomaly map, the value of high magnetic intensity in the southern part is fresh (intrusive) andesit-dasitic rock as host rock which causes alteration, in the middle has a low magnetic intensity value which is in the direction of the relatively NE-SW river direction, whereas in the north with high intensity is fresh andesite lava. From the image data, it can be seen that the straightness pattern of the geological structure which is dominated by the extensional structure with the direction of NE-SW and E-W is the main trap of epithermal veins carrying ore mineralization mainly Cu, Pb in the study area.


2017 ◽  
Vol 43 (1) ◽  
pp. 289 ◽  
Author(s):  
E. Kokinou ◽  
E. Kamberis ◽  
A. Sarris ◽  
I. Tzanaki

Giouchta Mt. is located south of Heraklion city, in Crete. It is an N-S trending morphological asymmetric ridge, with steep western slope whilst the eastern slope represents a smoother relief, composed of Mesozoic limestone and Eocene- lower Oligocene flysch sediments of the Gavrovo -Tripolis zone. The present study focuses on the geological structure of Mt. Giouchta. Field mapping and tectonic analysis is performed for this purpose. The dominant structures are contractional in nature, deformed by normal faulting related to the extensional episodes initiated in Serravallian times. The strain pattern in the area is revealed from strain analysis. It is inferred that the orientation of the stress field in the area has changed several times: the N-S, stress field which was dominant during Late Serravallian times changed to NE-SW (in Late Serravallian? - Early Tortonian) and subsequently to WNW-ESE (Early to Middle Tortonian) to become NW-SE in Late Tortonian. This orientation changed also during the Quaternary times trending from NW-SE (Early Pleistocene) to ENE-WSW (Middle Pleistocene-Holocene). In addition to the above, surface soil samples were collected in the wider area of mount Giouchta and they were analyzed in order to determine the magnetic susceptibility. GIS techniques were used for mapping the spatial distribution of the geological features and the magnetic measurements on the topographic relief of the area. Statistical analysis techniques were also applied in order to investigate the relation of faulting and magnetic susceptibility. Maps representing the spatial distribution of the above measurements were created by using appropriate interpolation algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5736
Author(s):  
Filippo Accomando ◽  
Andrea Vitale ◽  
Antonello Bonfante ◽  
Maurizio Buonanno ◽  
Giovanni Florio

The compensation of magnetic and electromagnetic interference generated by drones is one of the main problems related to drone-borne magnetometry. The simplest solution is to suspend the magnetometer at a certain distance from the drone. However, this choice may compromise the flight stability or introduce periodic data variations generated by the oscillations of the magnetometer. We studied this problem by conducting two drone-borne magnetic surveys using a prototype system based on a cesium-vapor magnetometer with a 1000 Hz sampling frequency. First, the magnetometer was fixed to the drone landing-sled (at 0.5 m from the rotors), and then it was suspended 3 m below the drone. These two configurations illustrate endmembers of the possible solutions, favoring the stability of the system during flight or the minimization of the mobile platform noise. Drone-generated noise was filtered according to a CWT analysis, and both the spectral characteristics and the modelled source parameters resulted analogously to that of a ground magnetic dataset in the same area, which were here taken as a control dataset. This study demonstrates that careful processing can return high quality drone-borne data using both flight configurations. The optimal flight solution can be chosen depending on the survey target and flight conditions.


2021 ◽  
Author(s):  
Cristian George Panaiotu ◽  
Cristian Necula ◽  
Relu D. Roban ◽  
Alexandru Petculescu ◽  
Ionut-Cornel Mirea ◽  
...  

<p>Cyclical changes in the magnetic mineral assemblages have been observed in numerous sedimentary records confirming the relationship between rock magnetism and past global change. Several studies have shown that the magnetic susceptibility data of cave sediments reflect both long- and short-term climatic oscillations. These magnetic susceptibility variations are attributed to changes in climate-controlled pedogenesis which influence the production of low coercivity magnetic mineral phases, magnetite, and maghemite outside the cave. These soils with climate-dependent magnetic properties are then washed, blown, or tracked into the cave where they accumulate, creating the changes observed in rock magnetic data. We present a rockmagnetism study of the sediments from the Urșilor cave and the soils above the cave. Our focus is the detailed characterization of the ferromagnetic mineralogy preserved in the cave sediments and its links with potential soil sources. In the cave, we sampled four sections (2-3 m high) consisting mainly of silts and clays, with some sand layers. The age of the sediments is older than 40 ka. At the surface, we sampled various types of soils from 9 sites. For all samples, we measured: variation of magnetic susceptibility with frequency (976 and 15616 Hz), the anisotropy of magnetic susceptibility, isothermal remanent magnetization, and anhysteretic remanent magnetization. Because soils are characterized by the presence of superparamagnetic magnetite produced by pedogenesis which can be detected by the frequency dependence of magnetic susceptibility, we also measured the frequency dependence of soils and selected cave sediment samples at 13 frequencies (between 128 and 512000 Hz). Multi-frequencies measurements of the magnetic susceptibility of recent soils show that all the sampled soils have a strong frequency dependence indicating the presence of superparamagnetic particles produced by pedogenesis. Most of the sediment samples have an important frequency dependence similar to the one observed in the recent soils. As a preliminary conclusion, we can state that most of the fine cave sediments contain superparamagnetic particles, which can be probably attributed to soils transported into the cave by erosion. These results suggest that during the deposition of high magnetic susceptibility sediments it was a climate favorable for intense pedogenesis. The interpretation of the intervals with lower values of magnetic susceptibility is still under investigation to decide if represents a climatic signal or a change in the dynamics of sediment transport. <strong>Acknowledgment:</strong> The research leading to these results has received funding from the EEA Grants 2014-2021, under Project contract no. EEA-RO-NO-2018-0126.</p>


2020 ◽  
Vol 8 (4) ◽  
pp. SS47-SS62
Author(s):  
Thibaut Astic ◽  
Dominique Fournier ◽  
Douglas W. Oldenburg

We have carried out petrophysically and geologically guided inversions (PGIs) to jointly invert airborne and ground-based gravity data and airborne magnetic data to recover a quasi-geology model of the DO-27 kimberlite pipe in the Tli Kwi Cho (also referred to as TKC) cluster. DO-27 is composed of three main kimberlite rock types in contact with each other and embedded in a granitic host rock covered by a thin layer of glacial till. The pyroclastic kimberlite (PK), which is diamondiferous, and the volcanoclastic kimberlite (VK) have anomalously low density, due to their high porosity, and weak magnetic susceptibility. They are indistinguishable from each other based upon their potential-field responses. The hypabyssal kimberlite (HK), which is not diamondiferous, has been identified as highly magnetic and remanent. Quantitative petrophysical signatures for each rock unit are obtained from sample measurements, such as the increasing density of the PK/VK unit with depth and the remanent magnetization of the HK unit, and are represented as a Gaussian mixture model (GMM). This GMM guides the PGI toward generating a 3D quasi-geology model with physical properties that satisfies the geophysical data sets and the petrophysical signatures. Density and magnetization models recovered individually yield volumes that have physical property combinations that do not conform to any known petrophysical characteristics of the rocks in the area. A multiphysics PGI addresses this problem by using the GMM as a coupling term, but it puts a volume of the PK/VK unit at a location that is incompatible with geologic information from drillholes. To conform to that geologic knowledge, a fourth unit is introduced, PK-minor, which is petrophysically and geographically distinct from the main PK/VK unit. This inversion produces a quasi-geology model that presents good structural locations of the diamondiferous PK unit and can be used to provide a resource estimate or decide the locations of future drillholes.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. J57-J67 ◽  
Author(s):  
Marlon C. Hidalgo-Gato ◽  
Valéria C. F. Barbosa

We have developed a fast 3D regularized magnetic inversion algorithm for depth-to-basement estimation based on an efficient way to compute the total-field anomaly produced by an arbitrary interface separating nonmagnetic sediments from a magnetic basement. We approximate the basement layer by a grid of 3D vertical prisms juxtaposed in the horizontal directions, in which the prisms’ tops represent the depths to the magnetic basement. To compute the total-field anomaly produced by the basement relief, the 3D integral of the total-field anomaly of a prism is simplified by a 1D integral along the prism thickness, which in turn is multiplied by the horizontal area of the prism. The 1D integral is calculated numerically using the Gauss-Legendre quadrature produced by dipoles located along the vertical axis passing through the prism center. This new magnetic forward modeling overcomes one of the main drawbacks of the nonlinear inverse problem for estimating the basement depths from magnetic data: the intense computational cost to calculate the total-field anomaly of prisms. The new sensitivity matrix is simpler and computationally faster than the one using classic magnetic forward modeling based on the 3D integrals of a set of prisms that parameterize the earth’s subsurface. To speed up the inversion at each iteration, we used the Gauss-Newton approximation for the Hessian matrix keeping the main diagonal only and adding the first-order Tikhonov regularization function. The large sparseness of the Hessian matrix allows us to construct and solve a linear system iteratively that is faster and demands less memory than the classic nonlinear inversion with prism-based modeling using 3D integrals. We successfully inverted the total-field anomaly of a simulated smoothing basement relief with a constant magnetization vector. Tests on field data from a portion of the Pará-Maranhão Basin, Brazil, retrieved a first depth-to-basement estimate that was geologically plausible.


Sign in / Sign up

Export Citation Format

Share Document