scholarly journals Ecologic-histophysiological overview of the involvement of the hypothalamo-hypophysial neurosecretory system in fish reproduction

2019 ◽  
Vol 323 (4) ◽  
pp. 476-497
Author(s):  
P.E. Garlov ◽  
M.V. Mosyagina ◽  
N.B. Rybalova

The participation of the hypothalamo-hypophysial neurosecretory system (HHNS) in fish reproduction was shown by histomorphological and electronic microscopical studies with the use of quantitative morphometry. The activation of HHNS at the beginning of spawning and the following decrease of its functional activity was revealed in all studied one-time spawning fish species independently of the spawning season (based on spring-, autumn- and winter-spawning genera: Acipenser, Oncorhynchus, and Lota respectively). The diphasic reaction of HHNS corresponding to stages of “an alarm and resistance to stress”, is considered to be the reflection of its participation in protective-adaptive reactions of an organism to a physiological stress. In monocyclic species, right after spawning, there becomes the blockade of neurohormone releasing function from neurohypophysis corresponding to supernatural inhibition of system at disstress. At the beginning of spawning nonapeptide neurohormones (NpNh) of HHNS initiate spawning behavior and the appearance of “mating attire” by exposure to the central nervous system, pituitary gland and complex visceral organs. Then they promote ovulation and spermiation by stimulating the contraction of the smooth muscles of gonad. By the end of reproduction, they participate in the implementation of the body’s adaptations, aimed at overcoming physiological stress-spawning. Maintaining the body’s metabolic equilibrium is ensured by the pronounced anti-gonadotropic NpNh effect by inhibiting the gonadoliberin secretion and stimulating at the same time its antagonist – adrenocorticotropin secretion, as well as their direct effect on endocrine and generative gonad’s functions. This effect is crucial for the normalization of the physiological body state after spawning, as it allows to radically affect the nature of metabolic processes, by “switching” them from generative to plastic metabolism. A constructive working scheme of neuroendocrine regulation fish reproduction – its initiation (stimulating neurohormonal effect) and completion (inhibitory effect) by the self-regulation principle is presented. The important HHNS functional role in the integration of fish reproduction and the intended mechanisms for its participation in spawning migrations are discussed.

2021 ◽  
Vol 285 ◽  
pp. 03014
Author(s):  
P. E. Garlov ◽  
R. Kolman

The participation of the hypothalamo-hypophysial neurosecretory system (HHNS) in fish reproduction was established by ecologo-histophysiological research with the help of light-, electronmicroscopy and immunocytochemistry. At the beginning of migrations of passing fish an active synthesis of neurosecretory products in pericarions of neurosecretory cells and their excretion into the cavity of the III brain ventricle was stated, while a mass accumulation of them in neurohypophysis occurs. Firstly, the excretion of neurohormones into the brain’s liquor should cause their neurotropic effect on the CNS behavior centers in the form of a dominant state of arousal, designated as “migration impulse”. Then HHNS initiates spawning behavior at the beginning of spawning and completes it by participating in overcoming natural physiological stress. In fish reproduction the main functional role of HHNS is to initiate reproductive energy-intensive processes of migratory and spawning behaviors, and to completion spawning by suppressing the hyperactivity of the target glands, ensuring the body’s transition to energysaving plastic metabolic exchange. The analysis of the key role of HHNS in fish reproduction has allowed to present a constructive working scheme of its neuroendocrine integration by the principle of self-regulation and to develop, on this basis, the system management of biotech reproduction of fish populations.


Author(s):  
Pavel Evgenyevich Garlov ◽  
Natalia Borisovna Rybalova ◽  
Tamara Alexeyevna Nechaeva ◽  
Saima Umargadzhievna Temirova ◽  
Vladimir Sergeevich Turicin Vladimir Sergeevich Turicin ◽  
...  

A completed full-system (scientific-applied) ecological-histophysiological study of the hypothalamo-hypophysial neurosecretory system (HHNS) participation in fish reproduction was established. With the help of light-, electron-microscopy and immunocytochemistry it is established for the first time that at the beginning migrations of passing fish there is a mass accumulation of neurosecretory products in neurohypophysis, which indicates to the inhibition of the normal level of their excretion into the bloodstream. At the same time, they are actively synthesized in the pericarions of the neurosecretory cells in the preoptic nucleus and excretioned into the cavity of the III brain ventricle. Firstly it is a sign of a violation of their basic osmoregulatory function, which should cause a change in habitat. Secondly, the synchronous excretion of neurohormones into the brain’s liquor should cause their neurotropic effect on the CNS behavior centers in the form of a dominant state of arousal in the form of “migration impulse”. At the beginning of spawning, regardless of its season, HHNS also initiates spawning behavior and completes spawning by participating in the body’s protective-adaptive reactions to natural physiological stress. The functional role of the HHNS in fish reproduction is to initiate energy-intensive reproductive processes of migratory and spawning behaviors, and to complete spawning by suppressing the hyperactivity of the target glands, which ensures the body’s transition to energy-saving plastic exchange. The analysis of this key role of HHNS in the integration of fish reproduction by the principle of self-regulation has allowed to define the principles of effective reproduction and cultivation fish management, primarily in the form of finding the most effective impacts on the centers of integration of managed functions or modeling their effects, which should be carried out in natural periods of functional lability of the body. A constructive working scheme neuroendocrine integration of fish reproduction has been presented and the possibility of applying method of comparative analysis to further develop the system management biotechnics of fish populations reproduction is considered.


Author(s):  
V. B. Dolgo-Saburov ◽  
N. I. Chalisova ◽  
L. V. Lyanginen ◽  
E. S. Zalomaeva

In an organotypic culture, an investigation was conducted into combined effects of cyclophosphamide DNA as synthesis inhibitor used to model a resorptive action of mustard gas, and cortexin polypeptide or each of 20 encoded amino acids on the development of cell proliferation in cerebral cortex explants of the rat. The combined administration of cyclophosphamide together with cortexin or with each of the 20 encoded amino acids, except glycine, showed suppression of the cytostatic agent inhibitory effect. Thus, cortexin and amino acids have a protective effect on cell proliferation in the tissue culture of the central nervous system under the action of mustardlike substances.


1989 ◽  
Vol 147 (1) ◽  
pp. 457-470 ◽  
Author(s):  
JAMES W. TRUMAN ◽  
PHILIP F. COPENHAVER

Larval and pupal ecdyses of the moth Manduca sexta are triggered by eclosion hormone (EH) released from the ventral nervous system. The major store of EH activity in the latter resides in the proctodeal nerves that extend along the larval hindgut. At pupal ecdysis, the proctodeal nerves show a 90% depletion of stored activity, suggesting that they are the major release site for the circulating EH that causes ecdysis. Surgical experiments involving the transection of the nerve cord or removal of parts of the brain showed that the proctodeal nerve activity originates from the brain. Retrograde and anterograde cobalt fills and immunocytochemistry using antibodies against EH revealed two pairs of neurons that reside in the ventromedial region of the brain and whose axons travel ipsilaterally along the length of the central nervous system (CNS) and project into the proctodeal nerve, where they show varicose release sites. These neurons constitute a novel neuroendocrine pathway in insects which appears to be dedicated solely to the release of EH.


1993 ◽  
Vol 265 (3) ◽  
pp. R481-R486 ◽  
Author(s):  
Y. Hirosue ◽  
A. Inui ◽  
A. Teranishi ◽  
M. Miura ◽  
M. Nakajima ◽  
...  

To examine the mechanism of the satiety-producing effect of cholecystokinin (CCK) in the central nervous system, we compared the potency of intraperitoneally (ip) or intracerebroventricularly (icv) administered CCK-8 and its analogues on food intake in fasted mice. The icv administration of a small dose of CCK-8 (0.03 nmol/brain) or of Suc-(Thr28, Leu29, MePhe33)-CCK-7 (0.001 nmol/brain) suppressed food intake for 20 min, whereas CCK-8 (1 nmol/kg, which is equivalent to 0.03 nmol/brain) or Suc-(Thr28, Leu29, MePhe33)-CCK-7 (1 nmol/kg) had satiety effect after ip administration. Dose-response studies indicated the following rank order of potency: Suc-CCK-7 > or = Suc-(Thr28, Leu29, MePhe33)-CCK-7 > or = CCK-8 > or = (Nle28,31)-CCK-8 >> desulfated CCK-8 = CCK-4 = 0 in the case of ip administration and Suc-(Thr28, Leu29, MePhe33)-CCK-7 >> Suc-CCK-7 > or = CCK-8 > or = (Nle28,31)-CCK-8 >> desulfated CCK-8 = CCK-4 = 0 in the case of icv administration. The selective CCK-A receptor antagonist MK-329 reversed the inhibitory effect of the centrally as well as peripherally administered CCK-8, or of Suc-(Thr28, Leu29, MePhe33)-CCK-7, whereas the selective CCK-B receptor antagonist L-365260 did not. The icv administered CCK-8 did not appear in the peripheral circulation. These findings suggest the participation of CCK-A receptors in the brain in mediating the satiety effect of CCK and the difference in CCK-A receptors in the brain and peripheral tissues.


2021 ◽  
Author(s):  
Mary Lynd Phan ◽  
Tyler L Renshaw ◽  
Julie Caramanico ◽  
Jeffrey M. Greeson ◽  
Elizabeth MacKenzie ◽  
...  

We reviewed the effects of mindfulness-based school interventions (MBSIs) on youth outcomes. We evaluated seventy-three studies with a total sample a total of 11,906 students across five continents, assessing the quality of each study through a robust coding system for evidence-based guidelines. Coders rated studies as 1++ (systematic review) to 4 (expert opinion) for level of evidence. Outcomes were assigned a corresponding evidence quality letter grade, from strongest (A) to weakest (D) evidence. Outcomes fell into 11 categories: wellbeing, self-compassion, social functioning, mental health, self-regulation and emotionality, mindful awareness, attentional focus, psychological and physiological stress, problem behaviors, academic performance, and acceptability. Strongest evidence showed increased resilience and reduced anxiety. There was comparable improvement in depression and wellbeing across youth relative to control groups. We urge researchers interested in MBSIs to study their effectiveness using more rigorous designs to minimize bias and promote higher quality evidence to guide school-based practice.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2833
Author(s):  
Krešimir Baumann ◽  
Lorena Kordić ◽  
Marko Močibob ◽  
Goran Šinko ◽  
Srđanka Tomić

The development of selective butyrylcholinesterase (BChE) inhibitors may improve the treatment of Alzheimer’s disease by increasing lower synaptic levels of the neurotransmitter acetylcholine, which is hydrolysed by acetylcholinesterase, as well as by overexpressed BChE. An increase in the synaptic levels of acetylcholine leads to normal cholinergic neurotransmission and improved cognitive functions. A series of 14 novel heterocyclic β-d-gluco- and β-d-galactoconjugates were designed and screened for inhibitory activity against BChE. In the kinetic studies, 4 out of 14 compounds showed an inhibitory effect towards BChE, with benzimidazolium and 1-benzylbenzimidazolium substituted β-d-gluco- and β-d-galacto-derivatives in a 10–50 micromolar range. The analysis performed by molecular modelling indicated key residues of the BChE active site, which contributed to a higher affinity toward the selected compounds. Sugar moiety in the inhibitor should enable better blood–brain barrier permeability, and thus increase bioavailability in the central nervous system of these compounds.


2018 ◽  
Vol 13 (8) ◽  
pp. 1934578X1801300
Author(s):  
Gislei F. Aragão ◽  
Manoel O. de Moraes Filho ◽  
Paulo N. Bandeira ◽  
Antônio P. Frota Junior ◽  
Yasmin Ingrid S. Oliveira de ◽  
...  

A triterpenic mixture of α and β-amyrin (AMY) extracted from Protium heptaphyllum has demonstrated several pharmacological effects, including activity in the central nervous system. The aim of this study was to evaluate the effect of AMY administration on locomotor activity of mice by the open field test using some monoaminergic agonists and antagonists and the cerebral cortex levels of monoamines and their major metabolites by high-performance liquid chromatography. Mice were treated acutely with AMY at doses of 1, 2.5 and 5 mg/kg given intraperitoneally and with the pharmacological agents and placed in open field test, then the animals were sacrificed and the cerebral cortex extracted, and monoamines were assayed in tissue homogenates. AMY at 1, 2.5 and 5 mg/kg decreased locomotor activity of animals by 25, 31 and 39%, respectively in the open field test. Ondasentron, doxazosin, oxymetazoline and clonidine did not reverse the inhibitory effect of 5 mg/kg AMY. Venlafaxine and yohimbine reversed the inhibitory effect of 5 mg AMY. In the cortex, the 5-HT and 5-HIAA were significantly reduced by the administration of AMY. NE and HVA were also reduced with 2.5 and 5 mg/kg AMY, while Dopamine and DOPAC were not increased with AMY. In conclusion, AMY decreased locomotor activity of animals accompanied by a decrease in 5-HT and NE levels in the cerebral cortex, this locomotor effect is reversed by drug that blocker the α-2-adrenoreceptor.


Sign in / Sign up

Export Citation Format

Share Document