scholarly journals Automation of Control of Modes of Power Supply and Lighting Systems of Cities

2021 ◽  
Vol 158 (5) ◽  
pp. 58-63
Author(s):  
P.P. Hovorov ◽  
◽  
V.P. Hovorov ◽  
A.K. Kindinova ◽  
◽  
...  
2019 ◽  
Vol 9 (22) ◽  
pp. 4894 ◽  
Author(s):  
Putz ◽  
Bednarek ◽  
Nawrowski

The paper deals with electromagnetic disturbances in the form of current higher harmonics, which are generated by LED lighting elements. It presents the problems related to the formation and impact of higher harmonics in the electrical systems of commercial facilities. The results of tests and analyses of current distortions for two different LED lamps are included, and these are in reference to the parameters set out in the normal applicable standards. A system was then proposed to improve the quality of energy in the mains of commercial facilities in the form of a two-stage power supply. Tests of the systems with the aforementioned LED lamps were conducted and commented upon after introduction of the two-stage power supply. The final part of the paper contains a summary of the obtained test results.


Author(s):  
P. P. Hovorov ◽  
K. V. Hovorova ◽  
А. К. Kindinova ◽  
O. Abdelrahim

Modern power supply and lighting systems of cities are complex electrical systems of an automated type, in which the processes in individual power supply systems and city lighting systems are interconnected and interdependent. Therefore, the search for efficient technologies for the transmission of electrical energy in them is an extremely difficult task. The real state of the power supply and lighting systems in cities today is characterized by low operating efficiency, largely due to the low quality of electrical energy and insufficient compensation of reactive power in them. The mutual influence of power supply and lighting systems in cities, as well as the presence of significant voltage deviations and the overflow of additional reactive power in the networks, causes an increase in voltage and power losses in them, as well as a decrease in the efficiency of networks and connected consumers, in general. Unfortunately, the existing methods and technical means based on them cannot fully solve this problem. The research carried out made it possible to clarify the nature of the processes in the power supply systems and the sanitation of cities and to determine the methods and technical means based on the Smart Grid concept. They are based on the use of phase-shifting booster transformers with an electronic control system. Their use made it possible to provide the possibility of complex control of the voltage modes of active and reactive power with the possibility of installation at any point in the network and centralized control from a single centre. The calculations show that the use of the developed methods and technical means provides an opportunity to reduce power losses in networks by 10–15% and energy costs for consumers by 50–75%.


Author(s):  
Shrutirekha Tripathy ◽  
Mitali M. Sahoo ◽  
Nimay Chandra Giri ◽  
Siba Prasad Mishra ◽  
Smruti Ranjan Nayak

About 200 million people of India are deprived of grid based power supply, prominently in inaccessible hilly and rural hamlets of the country. Present research is an attempt to design, install, operate use, and maintain the hand on set of light source to address the unserved populations dwelling in electricity inaccessible areas in India. The approach is designing and developing a low cost sustainable or solar emergency light through, “Solar Home Lighting Systems” or “Sustainable Emergency Light” technology, which is one of the smart and innovative approaches of illuminating sources by harnessing solar energy to light the darkened places. The attractive daily usable gadget with surged luminous efficiency, durability, extended life, ecofriendly, compact, and efficient to work at both small values of current and voltages and they are growing acceptance. The safe and non-ignition start, is the uniqueness over conventional emergency light, and solar energy founded. The stand-alone device with mobile charging port with luminosity of 150 Lux can be used in lighting the escape routes, open areas and high risk areas. Under the crisis of pandemic of Covid-19 virus, the portable solar lights is  safe and riskless light source for the economic backward classes, and can provide the children and students for online undisrupted  study up to about 8 to 10 hours at low cost in remote areas.


2017 ◽  
Vol 2 (2) ◽  
pp. 138-147
Author(s):  
Kustori Kustori ◽  
Zuris Nur Faiza Ningrum

Constant Current Regulator is a power supply used in the world of aviation for the provision of electric power in airport lighting systems. The electrical power supplied to the airport lighting lamp is maintained to provide power with constant current. It is intended that the runway lights, especially PAPI, has lighting in certain light brightness / intensity that we want according to the specified taping. At this time, CCR in Lombok International Airport has been using SCADA. Unfortunately for controlling and monitoring CCR on a runway lights especially PAPI can only be done in the control room, so engineers had to stand by in the control room. By given this design, android is expected to replace the SCADA that can be accessed remotely, no matter where technicians are located. Moreover, when the state requires you to change the CCR step, the technician can control CCR through android system in technician`s smartphone once monitor the CCR output current without having to stand by in the control room.


Author(s):  
D. V. Pekur ◽  
Yu. V. Kolomzarov ◽  
V. P. Kostilov ◽  
V. M. Sorokin ◽  
V. I. Kornaga ◽  
...  

Modern continuous lighting systems use powerful high-performance LEDs as light sources and an important task is to begin using alternative renewable energy sources for their power supply (including during the day). The simplest of the renewable energy sources is photovoltaic solar energy converter. However, solar photovoltaic generation depends significantly on many factors - geographical location, time of day, state of the atmosphere, time of year and the like. In addition, photovoltaic generation depends on the weather conditions and cloudiness, which makes it unstable and prone to change drastically (by an order of magnitude) during daylight hours. Therefore, an important element of the power system based on renewable energy sources is the system of accumulation of generated energy. The method of power stabilization using supercapacitors for systems with a significant change in power generation in the electrical power system is analyzed. The paper offers design principles of the power supply systems for powerful LEDs with supercapacitor energy storage devices intended to make the use of energy from sources with variable generation more efficient. The systems with supercapacitor-based drives, which allow to ensure stable operation of the lighting system when the power supply from an alternative source is absent or reduced, provide high safety and reliability, and have a significantly longer service life than battery-based energy storage systems.


2020 ◽  
pp. 36-40
Author(s):  
Pavel V. Tikhonov

The current state of LED lighting systems with parallel power supply by photovoltaic modules and central power supply network is analysed. The approach to implementation of parallel operation of LED luminaire powered by two sources of power is presented. It is simple, cheap and highly reliable as compared to the existing solutions. Based on this approach, four diagrams are developed which are applicable correspondingly to lighting applications and characteristics of photovoltaic modules and power consumers. The first and the second diagrams contain minimal quantity of transformers, but a number of operational constraints shall be taken into account when using them. The third diagram contains standard transformers and implies minimal number of various constraints, which makes it an optimal solution for the low-power lighting system being designed. The fourth diagram is expensive due to utilisation of equipment with automatic maximum power point tracking (the MPPT technology); it provides maximum possible energy efficiency of the lighting systems but the advantages of the MPPT technology apply only to high-power systems. It is preferable to use such objects where lighting is mostly required during daytime as consumers of such systems (shopping malls, underground passages, storage facilities, poultry farms, etc.). A positive aspect is increase in reliability of consumer power supply since power supply of LED luminaires will be also provided by an additional source. The proposed approach leads to reduction of power consumption for LED lighting, saving of fossil energy sources and therefore to ecologisation of the environment.


Sign in / Sign up

Export Citation Format

Share Document