scholarly journals Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro by activating NFE2L2/HMOX1 pathways

2019 ◽  
Vol 102 (2) ◽  
pp. 1658-1670 ◽  
Author(s):  
Y.F. Ma ◽  
L. Zhao ◽  
D.N. Coleman ◽  
M. Gao ◽  
J.J. Loor
2018 ◽  
Vol 63 (No. 3) ◽  
pp. 94-102
Author(s):  
Y.M. Guo ◽  
J. Gong ◽  
Y.G. Zheng ◽  
B.L. Shi ◽  
X.Y. Guo ◽  
...  

The uncontrolled release of arachidonic acid (ARA) and its metabolism by lipoxygenase (LOX) pathway can induce and aggravate cellular oxidative stress. Selenium (Se) is an integral part of some antioxidative selenoproteins and may protect cells from oxidative damage by modulating ARA release and metabolism. The present study aimed to investigate the protective response of Se against hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced oxidative damage in bovine mammary epithelial cells (BMECs). The BMECs were incubated for 24 h in serum-free medium and then divided into four groups randomly. The cells in groups 1 and 2 were subsequently incubated for 30 h in serum-free medium containing 0 (control) and 50 nM Se (Se treatment group). The cells in groups 3 and 4 were incubated for 24 h in serum-free medium containing 0 and 50 nM Se, and then treated with 600 μM H<sub>2</sub>O<sub>2</sub> for 6 h (H<sub>2</sub>O<sub>2</sub> damage group and Se prevention group). The results showed that Se attenuated the H<sub>2</sub>O<sub>2</sub>-induced production of reactive oxygen species and the decrease of antioxidative enzymes as glutathione peroxidase (GPX), thioredoxin reductase (TrxR), selenoprotein P (SelP), superoxide dismutase, and catalase in BMECs. The preventive effects of Se on the decrease of selenoprotein activity were demonstrated further by the increase of mRNA expression for GPX1, TrxR1, and SelP, and protein expression for GPX1 and TrxR1. Pretreatment of cells with Se inhibited the H<sub>2</sub>O<sub>2</sub>-induced increase of mRNA expressions and activities for cytosolic phospholipase A2 and 5-lipoxygenase, ARA release, and 15-hydroperoxyeicosatetraenoic acid production. Se also blocked the H<sub>2</sub>O<sub>2</sub>-induced activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase but not that of extracellular signal-regulated kinase. These results suggested that Se may protect BMECs against H<sub>2</sub>O<sub>2</sub>-induced oxidative damage by increasing selenoproteins synthesis, inhibiting MAPK pathway, and then decreasing ARA release and its metabolism by LOX pathway.


2019 ◽  
Vol 86 (2) ◽  
pp. 177-180
Author(s):  
Jacqueline P. Kurz ◽  
Mark P. Richards ◽  
Matthew Garcia ◽  
Zhongde Wang

AbstractThis Research Communication addresses the hypothesis that exogenously administered phospholipase A2 (PLA2) affects the inflammatory responses of bovine mammary epithelial cells (bMEC) in vitro with the aim of providing preliminary justification of investigation into the uses of exogenously administered PLA2 to manage or treat bovine mastitis. Primary bMEC lines from 11 lactating Holstein dairy cows were established and the expression of 14 pro-inflammatory genes compared under unchallenged and lipopolysaccharide (LPS)-challenged conditions, with and without concurrent treatment with bovine pancreatic PLA2G1B, a secreted form of PLA2. No differences in the expression of these genes were noted between PLA2-treated and untreated bMEC under unchallenged conditions. Following LPS challenge, untreated bMEC exhibited significant downregulation of CXCL8, IL1B, CCL20, and CXCL1. In contrast, PLA2-treated bMEC exhibited significant downregulation of IL1B and CCL20 only. These findings indicate that exogenous PLA2 affects the expression of some pro-inflammatory factors in immune-stimulated bMEC, but does not influence the constitutive expression of these factors. Further investigation of the influence of exogenous PLA2 in the bovine mammary gland is justified.


2019 ◽  
Vol 10 (10) ◽  
pp. 6276-6285 ◽  
Author(s):  
Xudong Sun ◽  
Hongdou Jia ◽  
Qiushi Xu ◽  
Chenxu Zhao ◽  
Chuang Xu

LYC against H2O2-induced oxidative damage in bMEC at least partly depended on activation of the NFE2L2 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document