scholarly journals Identification of rare genetic variants of the αS-caseins in milk from native Norwegian dairy breeds and comparison of protein composition with milk from high-yielding Norwegian Red cows

Author(s):  
N.R. Roin ◽  
L.B. Larsen ◽  
I. Comi ◽  
T.G. Devold ◽  
T.I. Eliassen ◽  
...  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Muhammad Aslam ◽  
Nirosiya Kandasamy ◽  
Anwar Ullah ◽  
Nagarajan Paramasivam ◽  
Mehmet Ali Öztürk ◽  
...  

AbstractRare variants in the beta-glucocerebrosidase gene (GBA1) are common genetic risk factors for alpha synucleinopathy, which often manifests clinically as GBA-associated Parkinson’s disease (GBA-PD). Clinically, GBA-PD closely mimics idiopathic PD, but it may present at a younger age and often aggregates in families. Most carriers of GBA variants are, however, asymptomatic. Moreover, symptomatic PD patients without GBA variant have been reported in families with seemingly GBA-PD. These observations obscure the link between GBA variants and PD pathogenesis and point towards a role for unidentified additional genetic and/or environmental risk factors or second hits in GBA-PD. In this study, we explored whether rare genetic variants may be additional risk factors for PD in two families segregating the PD-associated GBA1 variants c.115+1G>A (ClinVar ID: 93445) and p.L444P (ClinVar ID: 4288). Our analysis identified rare genetic variants of the HSP70 co-chaperone DnaJ homolog subfamily B member 6 (DNAJB6) and lysosomal protein prosaposin (PSAP) as additional factors possibly influencing PD risk in the two families. In comparison to the wild-type proteins, variant DNAJB6 and PSAP proteins show altered functions in the context of cellular alpha-synuclein homeostasis when expressed in reporter cells. Furthermore, the segregation pattern of the rare variants in the genes encoding DNAJB6 and PSAP indicated a possible association with PD in the respective families. The occurrence of second hits or additional PD cosegregating rare variants has important implications for genetic counseling in PD families with GBA1 variant carriers and for the selection of PD patients for GBA targeted treatments.


2021 ◽  
Vol 170 ◽  
pp. 106537
Author(s):  
Kenneth A. Myers ◽  
Mark F. Bennett ◽  
Bronwyn E. Grinton ◽  
Gabriel Dabscheck ◽  
Eunice K. Chan ◽  
...  

2019 ◽  
Vol 22 (1) ◽  
pp. 102-111 ◽  
Author(s):  
Joseph Park ◽  
◽  
Michael G. Levin ◽  
Christopher M. Haggerty ◽  
Dustin N. Hartzel ◽  
...  

2015 ◽  
Vol 13 (S1) ◽  
Author(s):  
E Sanchez ◽  
S Grandemange ◽  
F Tran Mau-Them ◽  
P Louis-Plence ◽  
A Carbasse ◽  
...  

PEDIATRICS ◽  
2020 ◽  
Vol 147 (1) ◽  
pp. e20200687
Author(s):  
Lauren Cummings ◽  
Megan Tucker ◽  
Margaret Gibson ◽  
Angela Myers ◽  
Tomi Pastinen ◽  
...  

Author(s):  
Lubomir Balabanski ◽  
Dimitar Serbezov ◽  
Maya Atanasoska ◽  
Sena Karachanak-Yankova ◽  
Savina Hadjidekova ◽  
...  

2021 ◽  
Vol 118 (51) ◽  
pp. e2112560118
Author(s):  
Anthony W. Zoghbi ◽  
Ryan S. Dhindsa ◽  
Terry E. Goldberg ◽  
Aydan Mehralizade ◽  
Joshua E. Motelow ◽  
...  

Extreme phenotype sequencing has led to the identification of high-impact rare genetic variants for many complex disorders but has not been applied to studies of severe schizophrenia. We sequenced 112 individuals with severe, extremely treatment-resistant schizophrenia, 218 individuals with typical schizophrenia, and 4,929 controls. We compared the burden of rare, damaging missense and loss-of-function variants between severe, extremely treatment-resistant schizophrenia, typical schizophrenia, and controls across mutation intolerant genes. Individuals with severe, extremely treatment-resistant schizophrenia had a high burden of rare loss-of-function (odds ratio, 1.91; 95% CI, 1.39 to 2.63; P = 7.8 × 10−5) and damaging missense variants in intolerant genes (odds ratio, 2.90; 95% CI, 2.02 to 4.15; P = 3.2 × 10−9). A total of 48.2% of individuals with severe, extremely treatment-resistant schizophrenia carried at least one rare, damaging missense or loss-of-function variant in intolerant genes compared to 29.8% of typical schizophrenia individuals (odds ratio, 2.18; 95% CI, 1.33 to 3.60; P = 1.6 × 10−3) and 25.4% of controls (odds ratio, 2.74; 95% CI, 1.85 to 4.06; P = 2.9 × 10−7). Restricting to genes previously associated with schizophrenia risk strengthened the enrichment with 8.9% of individuals with severe, extremely treatment-resistant schizophrenia carrying a damaging missense or loss-of-function variant compared to 2.3% of typical schizophrenia (odds ratio, 5.48; 95% CI, 1.52 to 19.74; P = 0.02) and 1.6% of controls (odds ratio, 5.82; 95% CI, 3.00 to 11.28; P = 2.6 × 10−8). These results demonstrate the power of extreme phenotype case selection in psychiatric genetics and an approach to augment schizophrenia gene discovery efforts.


2019 ◽  
Vol 28 (153) ◽  
pp. 190053 ◽  
Author(s):  
Raphael Borie ◽  
Pierre Le Guen ◽  
Mada Ghanem ◽  
Camille Taillé ◽  
Clairelyne Dupin ◽  
...  

Interstitial lung diseases (ILDs) are a set of heterogeneous lung diseases characterised by inflammation and, in some cases, fibrosis. These lung conditions lead to dyspnoea, cough, abnormalities in gas exchange, restrictive physiology (characterised by decreased lung volumes), hypoxaemia and, if progressive, respiratory failure. In some cases, ILDs can be caused by systemic diseases or environmental exposures. The ability to treat or cure these ILDs varies based on the subtype and in many cases lung transplantation remains the only curative therapy. There is a growing body of evidence that both common and rare genetic variants contribute to the development and clinical manifestation of many of the ILDs. Here, we review the current understanding of genetic risk and ILD.


Sign in / Sign up

Export Citation Format

Share Document