scholarly journals Toward a better understanding of the cellular basis for cerebrospinal fluid shunt obstruction: report on the construction of a bank of explanted hydrocephalus devices

2016 ◽  
Vol 18 (2) ◽  
pp. 213-223 ◽  
Author(s):  
Brian W. Hanak ◽  
Emily F. Ross ◽  
Carolyn A. Harris ◽  
Samuel R. Browd ◽  
William Shain

OBJECTIVE Shunt obstruction by cells and/or tissue is the most common cause of shunt failure. Ventricular catheter obstruction alone accounts for more than 50% of shunt failures in pediatric patients. The authors sought to systematically collect explanted ventricular catheters from the Seattle Children's Hospital with a focus on elucidating the cellular mechanisms underlying obstruction. METHODS In the operating room, explanted hardware was placed in 4% paraformaldehyde. Weekly, samples were transferred to buffer solution and stored at 4°C. After consent was obtained for their use, catheters were labeled using cell-specific markers for astrocytes (glial fibrillary acidic protein), microglia (ionized calcium-binding adapter molecule 1), and choroid plexus (transthyretin) in conjunction with a nuclear stain (Hoechst). Catheters were mounted in custom polycarbonate imaging chambers. Three-dimensional, multispectral, spinning-disk confocal microscopy was used to image catheter cerebrospinal fluid–intake holes (10× objective, 499.2-μm-thick z-stack, 2.4-μm step size, Olympus IX81 inverted microscope with motorized stage and charge-coupled device camera). Values are reported as the mean ± standard error of the mean and were compared using a 2-tailed Mann-Whitney U-test. Significance was defined at p < 0.05. RESULTS Thirty-six ventricular catheters have been imaged to date, resulting in the following observations: 1) Astrocytes and microglia are the dominant cell types bound directly to catheter surfaces; 2) cellular binding to catheters is ubiquitous even if no grossly visible tissue is apparent; and 3) immunohistochemical techniques are of limited utility when a catheter has been exposed to Bugbee wire electrocautery. Statistical analysis of 24 catheters was performed, after excluding 7 catheters exposed to Bugbee wire cautery, 3 that were poorly fixed, and 2 that demonstrated pronounced autofluorescence. This analysis revealed that catheters with a microglia-dominant cellular response tended to be implanted for shorter durations (24.7 ± 6.7 days) than those with an astrocyte-dominant response (1183 ± 642 days; p = 0.027). CONCLUSIONS Ventricular catheter occlusion remains a significant source of shunt morbidity in the pediatric population, and given their ability to intimately associate with catheter surfaces, astrocytes and microglia appear to be critical to this pathophysiology. Microglia tend to be the dominant cell type on catheters implanted for less than 2 months, while astrocytes tend to be the most prevalent cell type on catheters implanted for longer time courses and are noted to serve as an interface for the secondary attachment of ependymal cells and choroid plexus.

1988 ◽  
Vol 68 (5) ◽  
pp. 817-819 ◽  
Author(s):  
Charles C. Duncan

✓ Proximal shunt obstruction or obstruction of the ventricular catheter may present with signs and symptoms of shunt failure with either no cerebrospinal fluid flow or a falsely low intracranial pressure (ICP) upon shunt tap. The author reports a technique for lowering the ICP and for measuring the pressure in patients with such obstruction by cannulation of the reservoir and ventricular catheter to penetrate into the ventricle with a 3½-in. No. 22 spinal needle. The findings in 20 cases in which this approach was utilized are summarized.


1994 ◽  
Vol 81 (2) ◽  
pp. 179-183 ◽  
Author(s):  
Hiroaki Sakamoto ◽  
Ken Fujitani ◽  
Shouhei Kitano ◽  
Keiji Murata ◽  
Akira Hakuba

✓ The authors report four hydrocephalic children with cerebrospinal fluid (CSF) edema extending along the ventricular catheter of an obstructed CSF shunt. Three of the patients exhibited massive CSF edema along the ventricular catheter, yet they manifested neither ventricular enlargement nor apparent periventricular CSF edema despite increased intraventricular pressure. These findings suggested ventricular tautness. The remaining patient, who had dilated ventricles with periventricular CSF edema, displayed CSF edema in a limited area along the ventricular catheter. Replacement of the obstructed peritoneal catheter of the shunt resulted in rapid improvement of the edema in all patients. In the three patients with massive CSF edema, however, a small lesion remained in the subcortical white matter along the ventricular catheter as demonstrated by computerized tomography and/or magnetic resonance imaging 3 to 5 years after shunt revision. It is concluded that shunt obstruction may result in massive CSF edema along the ventricular catheter in hydrocephalic children who have ventricular tautness after installation of the shunt causing irreversible although usually asymptomatic damage to the affected area of the brain.


Author(s):  
J. E. Michaels ◽  
P. A. Tornheim

In mammals, the caudal roof of the fourth ventricle consists of an inner layer of ependymal cells and an outer layer of leptomeningeal cells. It contains specializations in the form of tufts of choroid plexus for the elaboration of cerebrospinal fluid (CSF) as well as gross apertures that permit open communication between the ventricular system and the subarachnoid space, an essential feature for mammalian CSF circulation. In the bullfrog, as in most submammals, the roof of the fourth ventricle contains a rostral rhombencephalic choroid plexus with no gross evidence of fourth ventricular apertures. Communication between the ventricular system and the subarachnoid space in this animal, however, has been demonstrated to occur by way of microscopic openings or pores in the caudal roof of the hindbrain or the posterior rhombencephalic tela choroidea.


2018 ◽  
Vol 16 (6) ◽  
pp. 647-657 ◽  
Author(s):  
Shigeki Yamada ◽  
Masatsune Ishikawa ◽  
Kazuo Yamamoto

Abstract BACKGROUND Freehand ventricular catheter placement has been reported to have poor accuracy. OBJECTIVE To investigate whether preoperative computational simulation using diagnostic images improves the accuracy of ventricular catheter placement. METHODS This study included 113 consecutive patients with normal-pressure hydrocephalus (NPH), who underwent ventriculoperitoneal shunting via a parieto-occipital approach. The locations of the ventricular catheter placement in the last 48 patients with preoperative virtual simulation on the 3-dimensional workstation were compared with those in the initial 65 patients without simulation. Catheter locations were classified into 3 categories: optimal, suboptimal, and poor placements. Additionally, slip angles were measured between the ventricular catheter and optimal direction. RESULTS All patients with preoperative simulations had optimally placed ventricular catheters; the mean slip angle for this group was 2.8°. Among the 65 patients without simulations, 46 (70.8%) had optimal placement, whereas 10 (15.4%) and 9 (13.8%) had suboptimal and poor placements, respectively; the mean slip angle for the nonsimulation group was 8.6°. The slip angles for all patients in the preoperative simulation group were within 7°, whereas those for 31 (47.7%) and 10 (15.4%) patients in the nonsimulation group were within 7° and over 14°, respectively. All patients with preoperative simulations experienced improved symptoms and did not require shunt revision during the follow-up period, whereas 5 patients (7.7%) without preoperative simulations required shunt revisions for different reasons. CONCLUSION Preoperative simulation facilitates accurate placement of ventricular catheters via a parieto-occipital approach. Minimally invasive and precise shunt catheter placement is particularly desirable for elderly patients with NPH.


Author(s):  
Eelco F. M. Wijdicks ◽  
William D. Freeman

Cerebrospinal fluid (CSF) fills the subarachnoid space, spinal canal, and ventricles of the brain. CSF is enclosed within the brain by the pial layer, ependymal cells lining the ventricles, and the epithelial surface of the choroid plexus, where it is largely produced. Choroid plexus is present throughout the ventricular system with the exception of the frontal and occipital horns of the lateral ventricle and the cerebral aqueduct. The vascular smooth muscle and the epithelium of the choroid plexus receive both sympathetic and parasympathetic input. In an adult, CSF is normally acellular. A normal spinal sample may contain up to 5 white blood cells (WBCs) or red blood cells (RBCs). CSF allows for a route of delivery and removal of nutrients, hormones, and transmitters for the brain.


Neurosurgery ◽  
2011 ◽  
Vol 70 (6) ◽  
pp. 1589-1602 ◽  
Author(s):  
Carolyn A. Harris ◽  
James P. McAllister

Abstract The treatment of hydrocephalus by cerebrospinal fluid shunting is plagued by ventricular catheter obstruction. Shunts can become obstructed by cells originating from tissue normal to the brain or by pathological cells in the cerebrospinal fluid for a variety of reasons. In this review, the authors examine ventricular catheter obstruction and identify some of the modifications to the ventricular catheter that may alter the mechanical and chemical cues involved in obstruction, including alterations to the surgical strategy, modifications to the chemical surface of the catheter, and changes to the catheter architecture. It is likely a combination of catheter modifications that will improve the treatment of hydrocephalus by prolonging the life of ventricular catheters to improve patient outcome.


2021 ◽  
Author(s):  
Felix Deffner ◽  
Corinna Gleiser ◽  
Ulrich Mattheus ◽  
Andreas Wagner ◽  
Peter H Neckel ◽  
...  

Abstract Background: The choroid plexus (CP) consists of specialized ependymal cells and underlying stroma and blood vessels, producing the bulk of the cerebrospinal fluid (CSF). CP epithelial cells are the site of the internal blood-cerebrospinal fluid barrier, show epithelial characteristics (basal lamina, tight junctions), and express aquaporin-1 (AQP1) apically. In contrast, ventricle-lining ependymal cells express aquaporin-4 (AQP4) basolaterallly. The initial purpose of this study was to analyze the expression of aquaporins in the ependyma – CP transition zone in the human brain to gain insights in aquaporin regulation. The results prompted us to investigate aquaporin expression in the mouse CP of different age groups. Methods: We analyzed the CP from eight body donors (age 74-91) applying immunofluorescence, qPCR, and freeze-fracture electron microscopy. We used antibodies against AQP1, AQP4, NKCC1, and Na/K-ATPase. In addition, we compared the CP from young (2 months), adult (12 months) and old (30 months) mice by qPCR and immunofluorescence. Results: Unexpectedly, many cells in the human CP were positive not only for AQP1 but also for AQP4, normally restricted to ependymal cells and astrocytes. Expression of AQP1 and AQP4 was found in the CP of all eight body donors. These results were confirmed by qPCR, and by electron microscopy detecting AQP4-specific orthogonal arrays of particles. To find out whether AQP4 expression correlated with relevant transport-related proteins we investigated expression of NKCC1 and Na/K-ATPase. Immunostaining for NKCC1 was similar to AQP1 and revealed no particular pattern related to AQP4. Co-staining of AQP4 and Na/K-ATPase indicated a trend for an inverse correlation of their expression. To test for the possibility of age-related changes causing AQP4 expression in the CP, we analyzed mouse brains from different age groups and found a significant increase of AQP4 on the mRNA level in old mice compared to young and adult animals. Conclusions: We provide evidence for AQP4 expression in the human and murine CP related to aging which likely contributes to the water flow through the CP epithelium and CSF production. In two alternative hypotheses, we discuss this as a beneficial compensatory, or a detrimental mechanism influencing the previously observed CSF changes during aging.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 963
Author(s):  
Mark A. Bryniarski ◽  
Tianjing Ren ◽  
Abbas R. Rizvi ◽  
Anthony M. Snyder ◽  
Marilyn E. Morris

Delivery of therapeutic agents to the central nervous system is challenged by the barriers in place to regulate brain homeostasis. This is especially true for protein therapeutics. Targeting the barrier formed by the choroid plexuses at the interfaces of the systemic circulation and ventricular system may be a surrogate brain delivery strategy to circumvent the blood-brain barrier. Heterogenous cell populations located at the choroid plexuses provide diverse functions in regulating the exchange of material within the ventricular space. Receptor-mediated transcytosis may be a promising mechanism to deliver protein therapeutics across the tight junctions formed by choroid plexus epithelial cells. However, cerebrospinal fluid flow and other barriers formed by ependymal cells and perivascular spaces should also be considered for evaluation of protein therapeutic disposition. Various preclinical methods have been applied to delineate protein transport across the choroid plexuses, including imaging strategies, ventriculocisternal perfusions, and primary choroid plexus epithelial cell models. When used in combination with simultaneous measures of cerebrospinal fluid dynamics, they can yield important insight into pharmacokinetic properties within the brain. This review aims to provide an overview of the choroid plexuses and ventricular system to address their function as a barrier to pharmaceutical interventions and relevance for central nervous system drug delivery of protein therapeutics. Protein therapeutics targeting the ventricular system may provide new approaches in treating central nervous system diseases.


Author(s):  
Vera L. Hopfenmüller ◽  
Birgit Perner ◽  
Hanna Reuter ◽  
Thomas J. D. Bates ◽  
Andreas Große ◽  
...  

The Wilms tumor suppressor gene Wt1 encodes a zinc finger transcription factor, which is highly conserved among vertebrates. It is a key regulator of urogenital development and homeostasis but also plays a role in other organs including the spleen and the heart. More recently additional functions for Wt1 in the mammalian central nervous system have been described. In contrast to mammals, bony fish possess two paralogous Wt1 genes, namely wt1a and wt1b. By performing detailed in situ hybridization analyses during zebrafish development, we discovered new expression domains for wt1a in the dorsal hindbrain, the caudal medulla and the spinal cord. Marker analysis identified wt1a expressing cells of the dorsal hindbrain as ependymal cells of the choroid plexus in the myelencephalic ventricle. The choroid plexus acts as a blood-cerebrospinal fluid barrier and thus is crucial for brain homeostasis. By employing wt1a mutant larvae and a dye accumulation assay with fluorescent tracers we demonstrate that Wt1a is required for proper choroid plexus formation and function. Thus, Wt1a contributes to the barrier properties of the choroid plexus in zebrafish, revealing an unexpected role for Wt1 in the zebrafish brain.


Sign in / Sign up

Export Citation Format

Share Document