scholarly journals Changes in language white matter tract microarchitecture associated with cognitive deficits in patients with presumed low-grade glioma

2019 ◽  
Vol 130 (5) ◽  
pp. 1538-1546 ◽  
Author(s):  
Fatih Incekara ◽  
Djaina Satoer ◽  
Evy Visch-Brink ◽  
Arnaud Vincent ◽  
Marion Smits

OBJECTIVEThe authors conducted a study to determine whether cognitive functioning of patients with presumed low-grade glioma is associated with white matter (WM) tract changes.METHODSThe authors included 77 patients with presumed low-grade glioma who underwent awake surgery between 2005 and 2013. Diffusion tensor imaging with deterministic tractography was performed preoperatively to identify the arcuate, inferior frontooccipital, and uncinate fasciculi and to obtain the mean fractional anisotropy (FA) and mean diffusivity per tract. All patients were evaluated preoperatively using an extensive neuropsychological protocol that included assessments of the language, memory, and attention/executive function domains. Linear regression models were used to analyze each cognitive domain and each diffusion tensor imaging metric of the 3 WM tracts.RESULTSSignificant correlations (corrected for multiple testing) were found between FA of the arcuate fasciculus and results of the repetition test for the language domain (β = 0.59, p < 0.0001) and between FA of the inferior frontooccipital fasciculus and results of the imprinting test for the memory domain (β = −0.55, p = 0.002) and the attention test for the attention and executive function domain (β = −0.62, p = 0.006).CONCLUSIONSIn patients with glioma, language deficits in repetition of speech, imprinting, and attention deficits are associated with changes in the microarchitecture of the arcuate and inferior frontooccipital fasciculi.

2008 ◽  
Vol 1 (4) ◽  
pp. 263-269 ◽  
Author(s):  
Weihong Yuan ◽  
Scott K. Holland ◽  
Blaise V. Jones ◽  
Kerry Crone ◽  
Francesco T. Mangano

Object Diffusion tensor (DT) imaging was used in children with supratentorial tumors to evaluate the anisotropic diffusion properties between different tumor grades and between tumors and adjacent and contralateral white matter. Methods In this retrospective review, the authors review the cases of 16 children (age range 1–18 years) who presented to their institution with supratentorial tumors and were treated between 2004 and 2007. Eleven patients had low-grade and 5 had high-grade tumors. Fractional anisotropy (FA), mean diffusivity, and axial (λ∥) and radial (λ⊥) eigenvalues within selected regions were studied. Mitotic index, necrosis, and vascularity of the tumors were compared with DT imaging parameters. Results The mean diffusivity was significantly higher in low-grade than in high-grade tumors (p = 0.04); the 2 tumor grades also significantly differed for both λ∥ (p < 0.05) and λ⊥ (p < 0.05). Mean diffusivity values in low-grade tumors were significantly higher than in adjacent normal-appearing white matter (NAWM; p = 0.0004) and contralateral NAWM (p = 0.0001). In both low- and high-grade tumors, the FA was significantly lower than in NAWM (p < 0.0001 and p < 0.03, respectively) and contralateral NAWM (p < 0.0001 and p < 0.003, respectively). Tumor cellularity highly correlated with mean diffusivity and λ∥and λ⊥. Conclusions Diffusion tensor imaging is a useful tool in the evaluation of supratentorial tumors in children. The mean diffusivity appears to be a significant marker in differentiating tumors grades. Findings related to λ∥ and λ⊥ within tumor groups and between tumors and NAWM may be an indirect manifestation of the combined effects of axonal injury, demyelination, and tumor mass within the cranial compartment.


2009 ◽  
Vol 21 (7) ◽  
pp. 1406-1421 ◽  
Author(s):  
Elizabeth A. Olson ◽  
Paul F. Collins ◽  
Catalina J. Hooper ◽  
Ryan Muetzel ◽  
Kelvin O. Lim ◽  
...  

Healthy participants (n = 79), ages 9–23, completed a delay discounting task assessing the extent to which the value of a monetary reward declines as the delay to its receipt increases. Diffusion tensor imaging (DTI) was used to evaluate how individual differences in delay discounting relate to variation in fractional anisotropy (FA) and mean diffusivity (MD) within whole-brain white matter using voxel-based regressions. Given that rapid prefrontal lobe development is occurring during this age range and that functional imaging studies have implicated the prefrontal cortex in discounting behavior, we hypothesized that differences in FA and MD would be associated with alterations in the discounting rate. The analyses revealed a number of clusters where less impulsive performance on the delay discounting task was associated with higher FA and lower MD. The clusters were located primarily in bilateral frontal and temporal lobes and were localized within white matter tracts, including portions of the inferior and superior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus, inferior fronto-occipital fasciculus, corticospinal tract, and splenium of the corpus callosum. FA increased and MD decreased with age in the majority of these regions. Some, but not all, of the discounting/DTI associations remained significant after controlling for age. Findings are discussed in terms of both developmental and age-independent effects of white matter organization on discounting behavior.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Maria Clara Zanon Zotin ◽  
Dorothee Schoemaker ◽  
Valentina Perosa ◽  
Martin Bretzner ◽  
Lukas Sveikata ◽  
...  

Introduction: Peak width of skeletonized mean diffusivity (PSMD) is a novel fully automated diffusion tensor imaging (DTI) marker that has been consistently associated with cognition in cerebral small vessel disease (SVD) cohorts, including cerebral amyloid angiopathy (CAA). We hypothesized that PSMD would be more strongly associated with cognitive performance compared to other conventional DTI metrics in our CAA sample. Methods: We recruited non-demented subjects with probable-CAA from a single-center memory-clinic cohort. We analyzed structural MRIs to compute a validated CAA burden score (0-6 points scale, based on the following MRI features: lobar microbleeds, superficial siderosis, perivascular spaces in centrum semiovale, and white matter hyperintensities). PSMD was obtained using a freely available script ( www.psmd-marker.com ). We used the same skeleton-mask to compute: mean of skeletonized mean diffusivity (mean MD) and mean of skeletonized fractional anisotropy (mean FA). We used linear regression analyses to explore relationships with CAA burden score and cognitive composite scores (processing speed, executive function, memory, and language - z-scores adjusted for age, sex and education level). Results: We included 43 subjects (mean age 74.4 ± 5.9 years; 48.8% female; PSMD median [IQR]: 4.05 [3.58 - 4.80] x 10 -4 mm 2 /s). In linear regression models adjusting for age, DTI metrics were significantly associated with CAA burden score (mean FA: β = -0.563, Adj. R 2 : 0.27; p < 0.001; mean MD: β = 0.581; Adj. R 2 : 0.32; p < 0.001; PSMD: β = 0.364, Adj. R 2 : 0.12; p = 0.018). PSMD was significantly associated with cognitive performance, specifically in the domains of executive function ( β = -0.568; Adj. R 2 : 0.25; p < 0.001) and processing speed ( β = -0.447; Adj. R 2 : 0.19; p = 0.004). Other DTI metrics were not significantly associated with cognitive scores. Conclusion: In this CAA sample, all DTI metrics were associated with CAA burden scores, however, only PSMD was significantly associated with cognition, in domains that are commonly affected in vascular cognitive impairment. Our results warrant confirmation in larger samples, but support PSMD as biomarker for cognition in CAA, outperforming other conventional DTI metrics.


Neurology ◽  
2018 ◽  
Vol 91 (24) ◽  
pp. e2244-e2255 ◽  
Author(s):  
Ian O. Bledsoe ◽  
Glenn T. Stebbins ◽  
Doug Merkitch ◽  
Jennifer G. Goldman

ObjectiveTo evaluate microstructural characteristics of the corpus callosum using diffusion tensor imaging (DTI) and their relationships to cognitive impairment in Parkinson disease (PD).MethodsSeventy-five participants with PD and 24 healthy control (HC) participants underwent structural MRI brain scans including DTI sequences and clinical and neuropsychological evaluations. Using Movement Disorder Society criteria, PD participants were classified as having normal cognition (PD-NC, n = 23), mild cognitive impairment (PD-MCI, n = 35), or dementia (PDD, n = 17). Cognitive domain (attention/working memory, executive function, language, memory, visuospatial function) z scores were calculated. DTI scalar values, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), were established for 5 callosal segments on a midsagittal plane, single slice using a topographically derived parcellation method. Scalar values were compared among participant groups. Regression analyses were performed on cognitive domain z scores and DTI metrics.ResultsParticipants with PD showed increased AD values in the anterior 3 callosal segments compared to healthy controls. Participants with PDD had significantly increased AD, MD, and RD in the anterior 2 segments compared to participants with PD-NC and most anterior segment compared to participants with PD-MCI. FA values did not differ significantly between participants with PD and participants with HC or among PD cognitive groups. The strongest associations for the DTI metrics and cognitive performance occurred in the most anterior and most posterior callosal segments, and also reflected fronto-striatal and posterior cortical type cognitive deficits, respectively.ConclusionsMicrostructural white matter abnormalities of the corpus callosum, as measured by DTI, may contribute to PD cognitive impairment by disrupting information transfer across interhemispheric and callosal–cortical projections.


2005 ◽  
Vol 46 (1) ◽  
pp. 104-109 ◽  
Author(s):  
H. Fukuda ◽  
J. Horiguchi ◽  
C. Ono ◽  
T. Ohshita ◽  
J. Takaba ◽  
...  

Purpose: To determine whether myotonic dystrophy (MyD) patients have diffusion tensor abnormalities suggestive of microstructural changes in normal‐appearing white matter (NAWM). Material and Methods: Conventional and diffusion tensor magnetic resonance images of the brain were obtained in 19 MyD patients and 19 age‐matched normal control subjects. Fractional anisotropy (FA) and mean diffusivity (MD) values were calculated in white matter lesions (WMLs) and NAWM in MyD patients and in the white matter of normal control subjects. Differences between WML and NAWM values and between MyD patient and control subject values were analyzed statistically. Results: Significantly lower FA and higher MD values were found in all regions of interest in the NAWM of MyD patients than in the white matter of control subjects ( P<0.01), as well as significantly lower FA and higher MD values in WMLs than in NAWM of MyD patients ( P<0.05). There was no significant correlation of mean FA or MD values in NAWM with patient age, age at onset, or duration of illness ( P>0.1). Conclusion: Diffusion tensor imaging analysis suggests the presence of diffuse microstructural changes in NAWM of MyD patients that may play an important role in the development of disability.


2019 ◽  
Vol 13 ◽  
pp. 117906951985862 ◽  
Author(s):  
Wouter S Hoogenboom ◽  
Todd G Rubin ◽  
Kenny Ye ◽  
Min-Hui Cui ◽  
Kelsey C Branch ◽  
...  

Mild traumatic brain injury (mTBI), also known as concussion, is a serious public health challenge. Although most patients recover, a substantial minority suffers chronic disability. The mechanisms underlying mTBI-related detrimental effects remain poorly understood. Although animal models contribute valuable preclinical information and improve our understanding of the underlying mechanisms following mTBI, only few studies have used diffusion tensor imaging (DTI) to study the evolution of axonal injury following mTBI in rodents. It is known that DTI shows changes after human concussion and the role of delineating imaging findings in animals is therefore to facilitate understanding of related mechanisms. In this work, we used a rodent model of mTBI to investigate longitudinal indices of axonal injury. We present the results of 45 animals that received magnetic resonance imaging (MRI) at multiple time points over a 2-week period following concussive or sham injury yielding 109 serial observations. Overall, the evolution of DTI metrics following concussive or sham injury differed by group. Diffusion tensor imaging changes within the white matter were most noticeable 1 week following injury and returned to baseline values after 2 weeks. More specifically, we observed increased fractional anisotropy in combination with decreased radial diffusivity and mean diffusivity, in the absence of changes in axial diffusivity, within the white matter of the genu corpus callosum at 1 week post-injury. Our study shows that DTI can detect microstructural white matter changes in the absence of gross abnormalities as indicated by visual screening of anatomical MRI and hematoxylin and eosin (H&E)-stained sections in a clinically relevant animal model of mTBI. Whereas additional histopathologic characterization is required to better understand the neurobiological correlates of DTI measures, our findings highlight the evolving nature of the brain’s response to injury following concussion.


Author(s):  
Piotr Podwalski ◽  
Krzysztof Szczygieł ◽  
Ernest Tyburski ◽  
Leszek Sagan ◽  
Błażej Misiak ◽  
...  

Abstract Diffusion tensor imaging (DTI) is an imaging technique that uses magnetic resonance. It measures the diffusion of water molecules in tissues, which can occur either without restriction (i.e., in an isotropic manner) or limited by some obstacles, such as cell membranes (i.e., in an anisotropic manner). Diffusion is most often measured in terms of, inter alia, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). DTI allows us to reconstruct, visualize, and evaluate certain qualities of white matter. To date, many studies have sought to associate various changes in the distribution of diffusion within the brain with mental diseases and disorders. A better understanding of white matter integrity disorders can help us recognize the causes of diseases, as well as help create objective methods of psychiatric diagnosis, identify biomarkers of mental illness, and improve pharmacotherapy. The aim of this work is to present the characteristics of DTI as well as current research on its use in schizophrenia, affective disorders, and other mental disorders.


2020 ◽  
Vol 10 (10) ◽  
pp. 711
Author(s):  
Álvaro Planchuelo-Gómez ◽  
David García-Azorín ◽  
Ángel L. Guerrero ◽  
Rodrigo de Luis-García ◽  
Margarita Rodríguez ◽  
...  

The white matter state in migraine has been investigated using diffusion tensor imaging (DTI) measures, but results using this technique are conflicting. To overcome DTI measures, we employed ensemble average diffusion propagator measures obtained with apparent measures using reduced acquisitions (AMURA). The AMURA measures were return-to-axis (RTAP), return-to-origin (RTOP) and return-to-plane probabilities (RTPP). Tract-based spatial statistics was used to compare fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity from DTI, and RTAP, RTOP and RTPP, between healthy controls, episodic migraine and chronic migraine patients. Fifty healthy controls, 54 patients with episodic migraine and 56 with chronic migraine were assessed. Significant differences were found between both types of migraine, with lower axial diffusivity values in 38 white matter regions and higher RTOP values in the middle cerebellar peduncle in patients with a chronic migraine (p < 0.05 family-wise error corrected). Significantly lower RTPP values were found in episodic migraine patients compared to healthy controls in 24 white matter regions (p < 0.05 family-wise error corrected), finding no significant differences using DTI measures. The white matter microstructure is altered in a migraine, and in chronic compared to episodic migraine. AMURA can provide additional results with respect to DTI to uncover white matter alterations in migraine.


Cephalalgia ◽  
2015 ◽  
Vol 35 (13) ◽  
pp. 1162-1171 ◽  
Author(s):  
Catherine D Chong ◽  
Todd J Schwedt

Background Specific white-matter tract alterations in migraine remain to be elucidated. Using diffusion tensor imaging (DTI), this study investigated whether the integrity of white-matter tracts that underlie regions of the “pain matrix” is altered in migraine and interrogated whether the number of years lived with migraine modifies fibertract structure. Methods Global probabilistic tractography was used to assess the anterior thalamic radiations, the corticospinal tracts and the inferior longitudinal fasciculi in 23 adults with migraine and 18 healthy controls. Results Migraine patients show greater mean diffusivity (MD) in the left and right anterior thalamic radiations, the left corticospinal tract, and the right inferior longitudinal fasciculus tract. Migraine patients also show greater radial diffusivity (RD) in the left anterior thalamic radiations, the left corticospinal tract as well as the left and right inferior longitudinal fasciculus tracts. No group fractional anisotropy (FA) differences were identified for any tracts. Migraineurs showed a positive correlation between years lived with migraine and MD in the right anterior thalamic radiations ( r = 0.517; p = 0.012) and the left corticospinal tract ( r = 0.468; p = 0.024). Conclusion Results indicate that white-matter integrity is altered in migraine and that longer migraine history is positively correlated with greater alterations in tract integrity.


2021 ◽  
Vol 11 (10) ◽  
pp. 1360
Author(s):  
Janessa B. Law ◽  
Bryan A. Comstock ◽  
Todd L. Richards ◽  
Christopher M. Traudt ◽  
Thomas R. Wood ◽  
...  

We aimed to evaluate diffusion tensor imaging (DTI) in infants born extremely preterm, to determine the effect of erythropoietin (Epo) on DTI, and to correlate DTI with neurodevelopmental outcomes at 2 years of age for infants in the Preterm Erythropoietin Neuroprotection (PENUT) Trial. Infants who underwent MRI with DTI at 36 weeks postmenstrual age were included. Neurodevelopmental outcomes were evaluated by Bayley Scales of Infant and Toddler Development (BSID-III). Generalized linear models were used to assess the association between DTI parameters and treatment group, and then with neurodevelopmental outcomes. A total of 101 placebo- and 93 Epo-treated infants underwent MRI. DTI white matter mean diffusivity (MD) was lower in placebo- compared to Epo-treated infants in the cingulate and occipital regions, and occipital white matter fractional isotropy (FA) was lower in infants born at 24–25 weeks vs. 26–27 weeks. These values were not associated with lower BSID-III scores. Certain decreases in clustering coefficients tended to have lower BSID-III scores. Consistent with the PENUT Trial findings, there was no effect on long-term neurodevelopment in Epo-treated infants even in the presence of microstructural changes identified by DTI.


Sign in / Sign up

Export Citation Format

Share Document