The effects of glucosteroids on experimental cold-induced brain edema.

1971 ◽  
Vol 34 (4) ◽  
pp. 477-487 ◽  
Author(s):  
Robert E. Maxwell ◽  
Don M. Long ◽  
Lyle A. French

✓ Although the beneficial effects of glucosteroids on brain edema are well documented and generally accepted clinically, investigations into their effects on experimental brain edema have been somewhat contradictory. In this study brain edema was produced by local cortical freezing in animals pretreated with glucosteroids and in untreated animals. Gross estimation of edema, wet weight-dry weight determination, and mechanical planimetry of areas of extravasated dye indicated a statistically significant reduction in edema of both white and gray matter at 24, 48, and 72 hours. Gross estimation of edema indicated a persisting effect with resolution of edema at 5 days in treated animals and from 7 to 12 days in untreated animals. These studies substantiate initial investigations and indicate a primary reduction in brain edema by glucosteroids. At least one of the effects of the glucosteroids appears to be reduction of the abnormal vascular permeability causing brain edema.

1974 ◽  
Vol 41 (2) ◽  
pp. 193-199 ◽  
Author(s):  
Stanley R. Nelson

✓ Cold-induced hemorrhagic infarcts in mice caused a spreading decrease in tissue specific gravity around the lesion; the decrease in tissue density represents an increase in edema fluid. The maximum decrease in density in most brain areas had occurred by 6 hours. This time period was used to evaluate the effect of nine drugs on brain edema. Two agents increased edema formation: hexamethonium and meralluride. Metaraminol, cortisone, hydrocortisone, acetazolamide, and dextran did not significantly alter edema formation. Only in the phenoxybenzamine- and urea-treated mice was brain edema less than in the control mice.


2000 ◽  
Vol 93 (3) ◽  
pp. 498-505 ◽  
Author(s):  
Cole A. Giller ◽  
Maureen Johns ◽  
Hanli Liu

✓ Localization of targets during stereotactic surgery is frequently accomplished by identification of the boundaries between the gray matter of various nuclei and the surrounding white matter. The authors describe an intracranial probe developed for this purpose, which uses near-infrared (NIR) light.The probe fits through standard stereotactic holders and emits light at its tip. The scattered light is detected and analyzed by a spectrometer, with the slope of the trailing portion of the reflectance curve used as the measurement value.Near-infrared readings were obtained during 27 neurosurgical procedures. The first three operations were temporal lobectomies, with values obtained from tracks in the resected specimen and resection bed. In the next five procedures, the probe was inserted stereotactically to a depth of 1 to 2 cm with measurements obtained every 1 mm. The probe was then used in 19 stereotactic procedures for movement disorders, obtaining measurements every 0.5 to 1 mm to target depths of 6 to 8 cm to interrogate subcortical structures. The NIR signals were correlated to distances beneath the cortical surface measured on postoperative computerized tomography or magnetic resonance imaging by using angle correction and three-dimensional reconstruction techniques.The NIR values for white and gray matter obtained during the lobectomies were significantly different (white matter 2.5 ± 0.37, gray matter 0.82 ± 0.23 mean ± standard deviation). The NIR values from the superficial stereotactic tracks showed initial low values corresponding to cortical gray matter and high values corresponding to subcortical white matter.There was good correlation between the NIR signals and postoperative imaging in the 19 stereotactic cases. Dips due to adjacent sulci, a plateau of high signal due to subcortical white matter, a dip in the NIR signal during passage through the ventricle, dips due to the caudate nucleus, and peaks due to the white matter capsule between ventricle and thalamus were constant features. The putamen—capsule boundary and the lamina externa and interna of the globus pallidus could be distinguished in three cases. Elevated signals corresponding to the thalamic floor were seen in 10 cases. Nuances such as prior lesions and nonspecific white matter changes were also detected. There was no incidence of morbidity associated with use of the probe. Data acquisition was straightforward and the equipment required for the studies was inexpensive.The NIR probe described in this article seems to be able to detect gray—white matter boundaries around and within subcortical structures commonly encountered in stereotactic functional neurosurgery. This simple, inexpensive method deserves further study to establish its efficacy for stereotactic localization.


1976 ◽  
Vol 45 (6) ◽  
pp. 683-691 ◽  
Author(s):  
Shokei Yamada ◽  
Phanor L. Perot ◽  
Thomas B. Ducker ◽  
Isabel Lockard

✓ A new myelotomy knife is described and a procedure, designed to sever certain reflex connections while preserving as many corticospinal connections as possible, is presented. Through intermittent dorsal midline incisions the gray matter lateral to the central canal is severed bilaterally under the microscope from L-1 to S-1. This procedure relieved mass spasms and hyperactive reflexes in 14 paraplegic or tetraplegic patients, but preserved postural reflexes and whatever voluntary motor power the patients had prior to myelotomy. Before myelotomy all patients were bedridden. Afterward nine patients were able to use a wheel chair and five were able to walk with the use of parallel bars or crutches.


1998 ◽  
Vol 88 (6) ◽  
pp. 1058-1065 ◽  
Author(s):  
Kenneth R. Wagner ◽  
Guohua Xi ◽  
Ya Hua ◽  
Marla Kleinholz ◽  
Gabrielle M. de Courten-Myers ◽  
...  

Object. The authors previously demonstrated, in a large-animal intracerebral hemorrhage (ICH) model, that markedly edematous (“translucent”) white matter regions (> 10% increases in water contents) containing high levels of clotderived plasma proteins rapidly develop adjacent to hematomas. The goal of the present study was to determine the concentrations of high-energy phosphate, carbohydrate substrate, and lactate in these and other perihematomal white and gray matter regions during the early hours following experimental ICH. Methods. The authors infused autologous blood (1.7 ml) into frontal lobe white matter in a physiologically controlled model in pigs (weighing approximately 7 kg each) and froze their brains in situ at 1, 3, 5, or 8 hours postinfusion. Adenosine triphosphate (ATP), phosphocreatine (PCr), glycogen, glucose, lactate, and water contents were then measured in white and gray matter located ipsi- and contralateral to the hematomas, and metabolite concentrations in edematous brain regions were corrected for dilution. In markedly edematous white matter, glycogen and glucose concentrations increased two- to fivefold compared with control during 8 hours postinfusion. Similarly, PCr levels increased several-fold by 5 hours, whereas, except for a moderate decrease at 1 hour, ATP remained unchanged. Lactate was markedly increased (approximately 20 µmol/g) at all times. In gyral gray matter overlying the hematoma, water contents and glycogen levels were significantly increased at 5 and 8 hours, whereas lactate levels were increased two- to fourfold at all times. Conclusions. These results, which demonstrate normal to increased high-energy phosphate and carbohydrate substrate concentrations in edematous perihematomal regions during the early hours following ICH, are qualitatively similar to findings in other brain injury models in which a reduction in metabolic rate develops. Because an energy deficit is not present, lactate accumulation in edematous white matter is not caused by stimulated anaerobic glycolysis. Instead, because glutamate concentrations in the blood entering the brain's extracellular space during ICH are several-fold higher than normal levels, the authors speculate, on the basis of work reported by Pellerin and Magistretti, that glutamate uptake by astrocytes leads to enhanced aerobic glycolysis and lactate is generated at a rate that exceeds utilization.


2000 ◽  
Vol 92 (6) ◽  
pp. 1016-1022 ◽  
Author(s):  
Ya Hua ◽  
Guohua Xi ◽  
Richard F. Keep ◽  
Julian T. Hoff

Object. Brain edema formation following intracerebral hemorrhage (ICH) appears to be partly related to erythrocyte lysis and hemoglobin release. Erythrocyte lysis may be mediated by the complement cascade, which then triggers parenchymal injury. In this study the authors examine whether the complement cascade is activated after ICH and whether inhibition of complement attenuates brain edema around the hematoma.Methods. This study was divided into three parts. In the first part, 100 µl of autologous blood was infused into the rats' right basal ganglia, and the animals were killed at 24 and 72 hours after intracerebral infusion. Their brains were tested for complement factors C9, C3d, and clusterin (a naturally occurring complement inhibitor) by using immunohistochemical analysis. In the second part of the study, the rats were killed at 24 or 72 hours after injection of 100 µl of blood. The C9 and clusterin proteins were quantitated using Western blot analysis. In the third part, the rats received either 100 µl of blood or 100 µl of blood plus 10 µg of N-acetylheparin (a complement activation inhibitor). Then they were killed 24 or 72 hours later for measurement of brain water and ion contents. It was demonstrated on Western blot analysis that there had been a sixfold increase in C9 around the hematoma 24 hours after the infusion of 100 µl of autologous blood. Marked perihematomal C9 immunoreactivity was detected at 72 hours. Clusterin also increased after ICH and was expressed in neurons 72 hours later. The addition of N-acetylheparin significantly reduced brain edema formation in the ipsilateral basal ganglia at 24 hours (78.5 ± 0.5% compared with 81.6 ± 0.8% in control animals, p < 0.001) and at 72 hours (80.9 ± 2.2% compared with 83.6 ± 0.9% in control animals, p < 0.05) after ICH.Conclusions. It was found that ICH causes complement activation in the brain. Activation of complement and the formation of membrane attack complex contributes to brain edema formation after ICH. Blocking the complement cascade could be an important step in the therapy for ICH.


1989 ◽  
Vol 70 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Toshihiko Kuroiwa ◽  
Makoto Shibutani ◽  
Riki Okeda

✓ The effect of suppression of postischemic reactive hyperemia on the blood-brain barrier (BBB) and ischemic brain edema after temporary focal cerebral ischemia was studied in cats under ketamine and alpha-chloralose anesthesia. Regional cerebral blood flow (rCBF) was measured by a thermal diffusion method and a hydrogen clearance method. The animals were separated into three groups. In Group A, the left middle cerebral artery (MCA) was occluded for 6 hours. In Group B, the MCA was occluded for 3 hours and then reperfused for 3 hours; postischemic hyperemia was suppressed to the preischemic level by regulating the degree of MCA constriction. In Group C, the MCA was occluded for 3 hours and reperfused for 3 hours without suppressing the postischemic reactive hyperemia. The brain was removed and cut coronally at the site of rCBF measurement. The degree of ischemic edema was assessed by gravimetry in samples taken from the coronal section and correlated with the degree of BBB disruption at the corresponding sites, evaluated by densitometric determination of Evans blue discoloration. The findings showed that 1) ischemic edema was significantly exacerbated by postischemic hyperemia during reperfusion in parallel with the degree of BBB opening to serum proteins, and 2) suppression of postischemic hyperemia significantly reduced the exacerbation of ischemic edema and BBB opening. These findings indicate that blood flow may be restored without significant exacerbation of postischemic edema by the suppression of postischemic hyperemia in focal cerebral ischemia.


2000 ◽  
Vol 93 (4) ◽  
pp. 594-604 ◽  
Author(s):  
Michael Bitzer ◽  
Thomas Nägele ◽  
Beverly Geist-Barth ◽  
Uwe Klose ◽  
Eckardt Grönewäller ◽  
...  

Object. In a prospective study, 28 patients with 32 intracranial meningiomas were examined to determine the role of hydrodynamic interaction between tumor and surrounding brain tissue in the pathogenesis of peritumoral brain edema.Methods. Gadolinium—diethylenetriamine pentaacetic acid (Gd-DPTA), an extracellular contrast agent used for routine clinical imaging, remains strictly extracellular without crossing an intact blood—brain barrier. Therefore, it is well suited for investigations of hydrodynamic extracellular mechanisms in the development of brain edema. Spin-echo T1-weighted magnetic resonance images were acquired before and after intravenous administration of 0.2 mmol/kg Gd-DPTA. Additional T1-weighted imaging was performed 0.6, 3.5, and 6.5 hours later. No significant Gd-DPTA diffused from tumor into peritumoral brain tissue in 12 meningiomas without surrounding brain edema. In contrast, in 17 of 20 meningiomas with surrounding edema, contrast agent in peritumoral brain tissue was detectable after 3.5 hours and 6.5 hours. In three of 20 meningiomas with minimum surrounding edema (< 5 cm3), contrast agent effusion was absent. After 3.5 hours and 6.5 hours strong correlations of edema volume and the maximum distance of contrast spread from the tumor margin into adjacent brain parenchyma (r = 0.84 and r = 0.87, respectively, p < 0.0001) indicated faster effusion in larger areas of edema.Conclusions. The results of this study show that significant contrast agent effusion from the extracellular space of the tumor into the interstitium of the peritumoral brain tissue is only found in meningiomas with surrounding edema. This supports the hypothesis that hydrodynamic processes play an essential role in the pathogenesis of peritumoral brain edema in meningiomas.


1984 ◽  
Vol 61 (5) ◽  
pp. 983-985 ◽  
Author(s):  
Avital Fast ◽  
Malvina Alon ◽  
Shmuel Weiss ◽  
Freddy R. Zer-Aviv

✓ The authors present a case of avascular necrosis of both femoral and humeral heads which developed after short-term steroid treatment for brain edema. Avascular necrosis of bone may develop after short-term as well as after maintenance steroid therapy. Early diagnosis with bone scanning and management may in some cases prevent joint destruction.


Author(s):  
Michael P. Pash ◽  
W. Arnold Tweed

SUMMARY:Brain edema (BE) research lacks quantitative regional methods. We modified the method of Pappius and McCann (1969), who used radioactive iodinated I125 serum albumin (RISA) as a label for vasogenic BE fluid. To correct for intravascular plasma volume we used Cr51 labelled red blood cells and calculated equivalent extravascular plasma volume (EVPV). The modified RISA method was compared with a standard method for measuring increased tissue water, i.e. the change in wef.dry weights. Anesthetized rabbits were subjected to unilateral cortical freeze injury and sacrificed three hours later. The lesion corresponding to the area of blood brain barrier (BBB) breakdown was delineated by Evan's blue staining. That area and the two adjacent poles were sectioned. The contralateral hemisphere was used as the control. Good agreement was found between the two methods. By the modified RISA method, 4.08% of the wet weight of the injured hemisphere was EVPV while the decrease in dry weight corresponded to 5.56% edema. In the freeze lesion, however, where BBB breakdown occurred extravascular (EV)protein exceeded EV water, while adjacent to the lesion in the area with intact BBB, EV water exceeded EV protein. This suggests that the diffusion rate for water through brain tissue exceeds that of albumin in the early stages of vasogenic BE formation. We conclude that the modified RISA method is a satisfactory measure of regional vasogenic BE in acute animal experiments.


1985 ◽  
Vol 63 (6) ◽  
pp. 830-839 ◽  
Author(s):  
Eiji Yoshino ◽  
Tarumi Yamaki ◽  
Toshihiro Higuchi ◽  
Yoshiharu Horikawa ◽  
Kimiyoshi Hirakawa

✓ Dynamic computerized tomography (CT) was performed on 42 patients with acute head injury to evaluate the hemodynamics and to elucidate the nature of fatal diffuse brain bulk enlargement. Patients were divided into two groups according to the outcome: Group A included 17 nonfatally injured patients, eight with acute epidural hematomas and nine with acute subdural hematomas; Group B included 25 fatally injured patients, 16 with acute subdural hematomas and nine with bilateral brain bulk enlargement. Remarkable brain bulk enlargement could be seen in all fatally injured patients with acute subdural hematoma. In 29 (69%) of 42 patients, dynamic CT was performed within 2 hours after the impact. In the nonfatally injured patients with brain bulk enlargement, dynamic CT scans suggested a hyperemic state. On the other hand, in 17 (68%) of the 25 fatally injured patients, dynamic CT scans revealed a severely ischemic state. In the fatally injured patients with acute subdural hematoma, CT Hounsfield numbers in the enlarged hemisphere (hematoma side) were significantly lower than those of the opposite side (p < 0.001). Severe diffuse brain damage confirmed by follow-up CT scans and uncontrollable high intracranial pressure were noted in the fatally injured patients. Brain bulk enlargement following head injury originates from acute brain edema and an increase of cerebral blood volume. In cases of fatal head injury, acute brain edema is the more common cause of brain bulk enlargement and occurs more rapidly than is usually thought.


Sign in / Sign up

Export Citation Format

Share Document