Surface ultrastructure of human ependyma

1976 ◽  
Vol 45 (1) ◽  
pp. 52-55 ◽  
Author(s):  
Lawrence C. Dempsey ◽  
Surl L. Nielsen

✓ Specimens of human ependyma obtained immediately after death were immersion-fixed and studied with a scanning electron microscope. Human ependyma is nearly identical in its surface ultrastructural features to the ependyma of other mammals.

2018 ◽  
Vol 24 (5) ◽  
pp. 832-839 ◽  
Author(s):  
Sai Charan Das ◽  
Rajesh Ranganathan ◽  
Murugan N.

Purpose The main purpose of this paper is to investigate the influence of build orientation on the tensile properties of PolyJet 3D printed parts. Effects on manufacturing time and total cost per part are the secondary objectives. Design/methodology/approach Solid tensile specimens were prepared as per the American Society for Testing and Materials D638 standards and were manufactured in six different orientations by using the Objet260 Connex 3D printer. VeroWhitePlus RGD835 was used as the build material, with FullCure 705 as the support material. The specimens were tested for their tensile strength and elongation. The side surface and the fracture surface were analyzed using the Field Emission Scanning Electron Microscope-SIGMA HV-Carl Zeiss with Bruker Quantax 200-Z10 EDS detector. Scanning electron microscope images of each surface were obtained at various magnifications. Findings From the study, it can be concluded that build orientation has an influence on the tensile strength and the manufacturing cost of the parts. The microstructural analysis revealed that the orientation of surface cracks/voids may be the reason for the strength. Originality/value From literature survey, it is inferred that this study is sure to be among the first few under this topic. These results will help engineers to decide upon the right build orientations with respect to print head so that parts with better mechanical properties can be manufactured.


1978 ◽  
Vol 48 (4) ◽  
pp. 609-613 ◽  
Author(s):  
Patricia Collins ◽  
Anthony D. Hockley ◽  
David H. M. Woollam

✓ Specimens of material occluding ventricular catheters removed at shunt revision operations were studied by scanning electron microscopy. Immediate fixation allowed examination of human choroid plexus and ependyma which resembled living tissue.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Author(s):  
S. Takashima ◽  
H. Hashimoto ◽  
S. Kimoto

The resolution of a conventional transmission electron microscope (TEM) deteriorates as the specimen thickness increases, because chromatic aberration of the objective lens is caused by the energy loss of electrons). In the case of a scanning electron microscope (SEM), chromatic aberration does not exist as the restrictive factor for the resolution of the transmitted electron image, for the SEM has no imageforming lens. It is not sure, however, that the equal resolution to the probe diameter can be obtained in the case of a thick specimen. To study the relation between the specimen thickness and the resolution of the trans-mitted electron image obtained by the SEM, the following experiment was carried out.


Author(s):  
R. F. Schneidmiller ◽  
W. F. Thrower ◽  
C. Ang

Solid state materials in the form of thin films have found increasing structural and electronic applications. Among the multitude of thin film deposition techniques, the radio frequency induced plasma sputtering has gained considerable utilization in recent years through advances in equipment design and process improvement, as well as the discovery of the versatility of the process to control film properties. In our laboratory we have used the scanning electron microscope extensively in the direct and indirect characterization of sputtered films for correlation with their physical and electrical properties.Scanning electron microscopy is a powerful tool for the examination of surfaces of solids and for the failure analysis of structural components and microelectronic devices.


Author(s):  
S. Saito ◽  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

Field emission scanning electron microscope (FESEM) features extremely high resolution images, and offers many valuable information. But, for a specimen which gives low contrast images, lateral stripes appear in images. These stripes are resulted from signal fluctuations caused by probe current noises. In order to obtain good images without stripes, the fluctuations should be less than 1%, especially for low contrast images. For this purpose, the authors realized a noise compensator, and applied this to the FESEM.Fig. 1 shows an outline of FESEM equipped with a noise compensator. Two apertures are provided gust under the field emission gun.


Author(s):  
Emil Bernstein

An interesting method for examining structures in g. pig skin has been developed. By modifying an existing technique for splitting skin into its two main components—epidermis and dermis—we can in effect create new surfaces which can be examined with the scanning electron microscope (SEM). Although this method is not offered as a complete substitute for sectioning, it provides the investigator with a means for examining certain structures such as hair follicles and glands intact. The great depth of field of the SEM complements the technique so that a very “realistic” picture of the organ is obtained.


Sign in / Sign up

Export Citation Format

Share Document