Protein and messenger RNA expression of connexin43 in astrocytomas: implications in brain tumor gene therapy

1996 ◽  
Vol 84 (5) ◽  
pp. 839-845 ◽  
Author(s):  
Nobusada Shinoura ◽  
Lin Chen ◽  
Maqsood A. Wani ◽  
Young Gyu Kim ◽  
Jeffrey J. Larson ◽  
...  

✓ The expression of connexin43, the primary gap-junction constituent of glial cells, was evaluated at the messenger RNA and protein levels in different grades of astrocytoma to investigate the relevance of gap junctions in herpes simplex virus—thymidine kinase (HSV-tk)—mediated gene therapy of brain tumors. Transduction of the retroviral-mediated HSV-tk gene into tumor cells with subsequent administration of ganciclovir has recently been used as an experimental therapeutic strategy for treatment of brain tumors. One aspect of this approach is the bystander effect, which augments the efficacy of this therapeutic approach. Glioblastoma cells with minimum levels of connexin43 protein were transfected with a connexin43 complementary DNA. These cells manifested a marked increase in the in vitro bystander effect, supporting the contention that the in vitro bystander effect is a consequence of metabolic cooperation between cells mediated by gap junctions. To assess relative levels of gap-junction protein expression in the relevant tumor type, we examined primary astrocytomas, primary astrocytoma cell cultures, and glioblastoma cell lines. Although most astrocytoma tumor samples expressed connexin43, they differed in the level of expression, with the greatest variation exhibited in high-grade astrocytomas. Primary glioblastoma cell cultures and established glioblastoma cell lines also displayed some variability in connexin43 levels. In aggregate, our results anticipate that glioblastomas will have a varied bystander effect during HSV-tk gene therapy depending on the level of connexin43 expression.

2000 ◽  
Vol 11 (7) ◽  
pp. 2459-2470 ◽  
Author(s):  
Lucy A. Stebbings ◽  
Martin G. Todman ◽  
Pauline Phelan ◽  
Jonathan P. Bacon ◽  
Jane A. Davies

Members of the innexin protein family are structural components of invertebrate gap junctions and are analogous to vertebrate connexins. Here we investigate two Drosophila innexin genes,Dm-inx2 and Dm-inx3 and show that they are expressed in overlapping domains throughout embryogenesis, most notably in epidermal cells bordering each segment. We also explore the gap-junction–forming capabilities of the encoded proteins. In pairedXenopus oocytes, the injection of Dm-inx2mRNA results in the formation of voltage-sensitive channels in only ∼ 40% of cell pairs. In contrast, Dm-Inx3 never forms channels. Crucially, when both mRNAs are coexpressed, functional channels are formed reliably, and the electrophysiological properties of these channels distinguish them from those formed by Dm-Inx2 alone. We relate these in vitro data to in vivo studies. Ectopic expression ofDm-inx2 in vivo has limited effects on the viability ofDrosophila, and animals ectopically expressingDm-inx3 are unaffected. However, ectopic expression of both transcripts together severely reduces viability, presumably because of the formation of inappropriate gap junctions. We conclude that Dm-Inx2 and Dm-Inx3, which are expressed in overlapping domains during embryogenesis, can form oligomeric gap-junction channels.


1986 ◽  
Vol 250 (3) ◽  
pp. C495-C505 ◽  
Author(s):  
R. Agrawal ◽  
E. E. Daniel

This study examined whether the synthesis of the metabolites of arachidonic acid (AA) was involved in gap junction formation by 4-aminopyridine (4-AP) treatment in vitro in canine trachealis. Studies were made of the effects on gap junction formation of putative inhibitors of the cyclooxygenase and of both this and the lipoxygenase pathway of AA metabolism and the direct effects of prostaglandins (PG) E2 and I2. The number of gap junctions of similar size was increased after brief exposure to 4-AP. After indomethacin (IDM), 4-AP treatment decreased the number of gap junctions but did not affect their size. Pretreatment with 5,8,11,14-eicosatetraynoic acid or nordihydroguiaretic acid, putative inhibitors of cyclooxygenase and lipoxygenase enzymes, inhibited both the 4-AP-induced increase and decrease in the number of gap junctions. FPL 55712, a putative antagonist of leukotriene C4, did not alter either the number or the size of gap junctions when added alone or in combination with IDM. AA alone increased the number of gap junctions, but after IDM, AA decreased the number of gap junctions compared with the controls. Incubation of trachealis strips in vitro for 30 min with PGE2 increased the number of gap junctions by about threefold along with an increase in the size of the gap junctions. Similar incubation with PGI2, however, increased the number of gap junctions by approximately 60% without any change in the size. In the course of some control experiments, an interaction between carbachol and alcohol was observed such that alcohol caused an IDM-sensitive relaxation of carbachol-induced contractions, which was not observed when serotonin was the contractile agent. These results strongly suggest that PGE2 and PGI2 increase the formation of gap junctions in canine trachealis and that these prostanoids are released by 4-AP treatment. Leukotrienes may also be inhibitory in the formation of gap junctions, but FPL 55712 did not affect either the increase or the decrease in gap junctions after 4-AP.


2003 ◽  
Vol 89 (4) ◽  
pp. 2046-2054 ◽  
Author(s):  
Isabel Pais ◽  
Sheriar G. Hormuzdi ◽  
Hannah Monyer ◽  
Roger D. Traub ◽  
Ian C. Wood ◽  
...  

Bath application of kainate (100–300 nM) induced a persistent gamma-frequency (30–80 Hz) oscillation that could be recorded in stratum radiatum of the CA3 region in vitro. We have previously described that in knockout mice lacking the gap junction protein connexin 36 (Cx36KO), γ-frequency oscillations are reduced but still present. We now demonstrate that in the Cx36KO mice, but not in wild-type (WT), large population field excitatory postsynaptic potentials, or sharp wave-burst discharges, also occurred during the on-going γ-frequency oscillation. These spontaneous burst discharges were not seen in WT mice. Burst discharges in the Cx36KO mice occurred with a mean frequency of 0.23 ± 0.11 Hz and were accompanied by a series of fast (approximately 60–115 Hz) population spikes or “ripple” oscillations in many recordings. Intracellular recordings from CA3 pyramidal cells showed that the burst discharges consisted of a depolarizing response and presumed coupling potentials (spikelets) could occasionally be seen either before or during the burst discharge. The burst discharges occurring in Cx36KO mice were sensitive to gap junctions blockers as they were fully abolished by carbenoxolone (200 μM). In control mice we made several attempts to replicate this pattern of sharp wave activity/ripples occurring with the on-going kainate-evoked γ-frequency oscillation by manipulating synaptic and electrical signaling. Partial disruption of inhibition, in control slices, by bath application of the γ-aminobutyric acid-A (GABAA) receptor antagonist bicuculline (1–4 μM) completely abolished all γ-frequency activity before any burst discharges occurred. Increasing the number of open gap junctions in control slices by using trimethylamine (TMA; 2–10 mM), in conjunction with kainate, failed to elicit any sharp wave bursts or fast ripples. However, bath application of the potassium channel blocker 4-aminopyridine (4-AP; 20–80 μM) produced a pattern of activity in control mice (13/16 slices), consisting of burst discharges occurring in conjunction with kainate-evoked γ-frequency oscillations, that was similar to that seen in Cx36KO mice. In a few cases ( n = 9) the burst discharges were accompanied by fast ripple oscillations. Carbenoxolone also fully blocked the 4-AP-evoked burst discharges ( n = 5). Our results show that disruption of electrical signaling in the interneuronal network can, in the presence of kainate, lead to the spontaneous generation of sharp wave/ripple activity similar to that observed in vivo. This suggests a complex role for electrically coupled interneurons in the generation of hippocampal network activity.


2019 ◽  
Vol Volume 12 ◽  
pp. 3905-3918
Author(s):  
Monika Witusik-Perkowska ◽  
Magdalena Zakrzewska ◽  
Dariusz Jaskolski ◽  
Paweł P Liberski ◽  
Janusz Szemraj

Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 237 ◽  
Author(s):  
Takayuki Okamoto ◽  
Haruki Usuda ◽  
Tetsuya Tanaka ◽  
Koichiro Wada ◽  
Motomu Shimaoka

Angiogenesis—the sprouting and growth of new blood vessels from the existing vasculature—is an important contributor to tumor development, since it facilitates the supply of oxygen and nutrients to cancer cells. Endothelial cells are critically affected during the angiogenic process as their proliferation, motility, and morphology are modulated by pro-angiogenic and environmental factors associated with tumor tissues and cancer cells. Recent in vivo and in vitro studies have revealed that the gap junctions of endothelial cells also participate in the promotion of angiogenesis. Pro-angiogenic factors modulate gap junction function and connexin expression in endothelial cells, whereas endothelial connexins are involved in angiogenic tube formation and in the cell migration of endothelial cells. Several mechanisms, including gap junction function-dependent or -independent pathways, have been proposed. In particular, connexins might have the potential to regulate cell mechanics such as cell morphology, cell migration, and cellular stiffness that are dynamically changed during the angiogenic processes. Here, we review the implication for endothelial gap junctions and cellular mechanics in vascular angiogenesis.


2012 ◽  
Vol 131 (2) ◽  
pp. E33-E44 ◽  
Author(s):  
Pietro Ferruzzi ◽  
Federica Mennillo ◽  
Antonella De Rosa ◽  
Cinzia Giordano ◽  
Marco Rossi ◽  
...  

2019 ◽  
Vol 73 (5) ◽  
pp. 391-394
Author(s):  
Marina Tusup ◽  
Lars E. French ◽  
Mara De Matos ◽  
David Gatfield ◽  
Thomas Kundig ◽  
...  

The use of in vitro transcribed messenger RNA (ivt mRNA) for vaccination, gene therapy and cell reprograming has become increasingly popular in research and medicine. This method can be used in vitro (transfected in cells) or administered naked or formulated (lipoplexes, polyplexes, and lipopolyplexes that deliver the RNA to specific organs, such as immune structures, the lung or liver) and is designed to be an immunostimulatory or immunosilent agent. This vector contains several functional regions (Cap, 5' untranslated region, open reading frame, 3' untranslated region and poly-A tail) that can all be optimised to generate a highly efficacious ivt mRNA. In this study, we review these aspects and report on the effect of the ivt mRNA purification method on the functionality of this synthetic transient genetic vector.


2000 ◽  
Vol 84 (2) ◽  
pp. 927-933 ◽  
Author(s):  
Jeffrey S. Schweitzer ◽  
Haiwei Wang ◽  
Zhi-Qi Xiong ◽  
Janet L. Stringer

Under conditions of low [Ca2+]o and high [K+]o, the rat dentate granule cell layer in vitro develops recurrent spontaneous prolonged field bursts that resemble an in vivo phenomenon called maximal dentate activation. To understand how pH changes in vivo might affect this phenomenon, the slices were exposed to different extracellular pH environments in vitro. The field bursts were highly sensitive to extracellular pH over the range 7.0–7.6 and were suppressed at low pH and enhanced at high pH. Granule cell resting membrane potential, action potentials, and postsynaptic potentials were not significantly altered by pH changes within the range that suppressed the bursts. The pH sensitivity of the bursts was not altered by pharmacologic blockade of N-methyl-d-aspartate (NMDA), non-NMDA, and GABAA receptors at concentrations of these agents sufficient to eliminate both spontaneous and evoked synaptic potentials. Gap junction patency is known to be sensitive to pH, and agents that block gap junctions, including octanol, oleamide, and carbenoxolone, blocked the prolonged field bursts in a manner similar to low pH. Perfusion with gap junction blockers or acidic pH suppressed field bursts but did not block spontaneous firing of single and multiple units, including burst firing. These data suggest that the pH sensitivity of seizures and epileptiform phenomena in vivo may be mediated in large part through mechanisms other than suppression of NMDA-mediated or other excitatory synaptic transmission. Alterations in electrotonic coupling via gap junctions, affecting field synchronization, may be one such process.


2002 ◽  
Vol 50 (6) ◽  
pp. 479-489 ◽  
Author(s):  
Ioannis A. Avramis ◽  
Garyfallia Christodoulopoulos ◽  
Atsushi Suzuki ◽  
Walter E. Laug ◽  
Ignacio Gonzalez-Gomez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document