scholarly journals THE MICROBIOLOGICAL QUALITY OF WATER, PATHOGENIC MICROORGANISMS IN FOOD PRODUCTS AND FACEL CONTAMINATION IN THE RIVERS OF THE REPUBLIC OF KOSOVO

2018 ◽  
Vol 11 (4) ◽  
pp. 1399-1404
Author(s):  
Nexhdet Shala ◽  
Ibrahim Hoxha ◽  
Gafur Q. Xhabiri ◽  
Bajram Avdiu
2009 ◽  
Vol 8 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Marta Sofia Valente ◽  
Paulo Pedro ◽  
M. Carmen Alonso ◽  
Juan J. Borrego ◽  
Lídia Dionísio

Monitoring the microbiological quality of water used for recreational activities is very important to human public health. Although the sanitary quality of recreational marine waters could be evaluated by standard methods, they are time-consuming and need confirmation. For these reasons, faster and more sensitive methods, such as the defined substrate-based technology, have been developed. In the present work, we have compared the standard method of membrane filtration using Tergitol-TTC agar for total coliforms and Escherichia coli, and Slanetz and Bartley agar for enterococci, and the IDEXX defined substrate technology for these faecal pollution indicators to determine the microbiological quality of natural recreational waters. ISO 17994:2004 standard was used to compare these methods. The IDEXX for total coliforms and E. coli, Colilert®, showed higher values than those obtained by the standard method. Enterolert® test, for the enumeration of enterococci, showed lower values when compared with the standard method. It may be concluded that more studies to evaluate the precision and accuracy of the rapid tests are required in order to apply them for routine monitoring of marine and freshwater recreational bathing areas. The main advantages of these methods are that they are more specific, feasible and simpler than the standard methodology.


2020 ◽  
Vol 18 (2) ◽  
pp. 200-206
Author(s):  
L. Bolelli ◽  
Elida Nora Ferri ◽  
Stefano Sangiorgi ◽  
Giuseppe Novelli ◽  
Stefano Girotti

Abstract Effective resin disinfection is mandatory to ensure the microbiological quality of water treated by domestic softeners. The wet and sometimes warm environment inside the softener is ideal for bacteria growth. Our research was focused on the evaluation of the microbial quality of water from softeners sanitized by chlorine solutions or by electrolytic systems. We employed the heterotrophic plate count and specific tests to monitor the presence of opportunistic and pathogenic bacteria (Pseudomonas aeruginosa, Escherichia coli, enterococci, and coliforms). Completely new devices were equipped with a commercially available electrolytic system or with a newly patented one or sanitized by automatic or manual addition of chlorine solutions. In all cases, the contamination was reduced, not completely avoided. In particular, the patented electrolytic system significantly reduced bacterial proliferation in strongly contaminated devices. Our data confirm the difficulties encountered to solve the problem of microbiological quality of softened water and offer encouraging information on new possible solutions. This article has been made Open Access thanks to the generous support of a global network of libraries as part of the Knowledge Unlatched Select initiative.


2010 ◽  
Vol 25 (4) ◽  
pp. 489-494 ◽  
Author(s):  
S. O'Hogain ◽  
L. McCarton ◽  
N. McIntyre ◽  
J. Pender ◽  
A. Reid

2003 ◽  
Vol 80 (3) ◽  
pp. 241-250 ◽  
Author(s):  
Tony J Fang ◽  
Que-King Wei ◽  
Chia-Wei Liao ◽  
Min-Ju Hung ◽  
Tzu-Hui Wang

2019 ◽  
Vol 7 (2) ◽  
pp. 68
Author(s):  
Wahyuni Wahyuni ◽  
Supriyono Eko Wardoyo ◽  
Ridha Arizal

The Quality of Well Water around Final Garbage Dump (FGD)  Rawa Kucing, Tangerang, IndonesiaFGD Rawa Kucing is located at Sultan Iskandar Muda Street, Kedaung Wetan, Neglasari, Tangerang, Banten, Indonesia. It serves 1000 tons of garbage per day from 13 districts in Tangerang. The volume of garbage in Kota Tangerang increases from 1,212,264 m3 in 2008 to 4,590,724 m3in 2012.Well water is the main source of water for people around the FGD RawaKucing. They use well water for bath, wash,  and toilet (BWT) and other needs. Garbage decomposition which makes pollution around FGD Rawa Kucing can accur in air, water, and soil. Waste accurs in water and soil caused by leachate. Leachate can easily  spread through rainwater runoff and it absorbs to the ground and polluting it including well water around it. Contaminated well water can decrease the quality of water physically, chemically, and microbiologically.Groundwater samples taken from residents' well water around FGD Rawa Kucing  and they were represented by three groups which have distance 100 m - 3 km from FGD. Each group consisted of three samples which were taken from well water having depths between 8-18 m. The examination of the quality of well water should be made in accordance with the Regulation of the Minister of Health of the Republic of Indonesia No.416/MENKE /PER/IX/1990 on the Conditions and Control of the Quality of Clean Water and Quality Regulation of the Minister of Health of the Republic of Indonesia No. 492/MENKES/PER/IV/ on Requirements and Quality Control of Drinking Water.The quality of well water around FGD Rawa Kucing showed that there were the decreased quality water after testing with several parameter tests. There were six examination parameters which concentrate on exceeding the required quality standards that of TDS (1600-1764 mg/L), Nitrates (10.5-37.8 mg/L), Ammonia (3.50-66.21 mg/L), Iron (1.054-7.063 mg/L), Manganese (1.085-10.130 mg/L), and Total Coliform (80-130 colonies/100 mL).Keywords : Well water, leachate, TPAS, pollution, water qualityABSTRAKTPAS Rawa Kucing berada di Jalan Sultan Iskandar Muda Kelurahan Kedaung Wetan, Kecamatan Neglasari, Kota Tangerang, Banten dan mengangkut 1000 ton sampah/hari dari 13 kecamatan.Volume sampah di Kota Tangerang terus meningkat dari tahun 2008 sebesar 1.212.264 m3 sampai pada tahun 2012 telah mencapai 4.590.724 m3. Air sumur merupakan sumber air utama bagi masyarakat sekitar TPAS, karena hampir semua kebutuhan air dipenuhi dari air sumur yaitu untuk Mandi Cuci Kakus (MCK) dan kebutuhan lainnya. Pencemaran akibat dekomposisi sampah dapat terjadi di udara, dapat pula terjadi pada air dan tanah yang disebabkan oleh adanya rembesan air lindi. Lindi tersebut mudah disebarkan melalui limpasan air hujan dan meresap mencemari air tanah termasukair sumur yang ada di sekitarnya. Air sumur yang terkontaminasi lindi berakibat terjadinya penurunan kualitas air secara fisik, kimia, dan mikrobiologi. Air tanah sampelyang diambil berasal dari sumur penduduk yang berada di sekitar TPAS Rawa Kucing diwakili oleh 3 pengelompokkan dengan jarak 100 m – 3 km dari TPAS. Setiap kelompok terdiri dari 3 sumur pompa dengan kedalaman sumur antara 8 – 18 m. Pemeriksaan kualitas air sumur dilakukan  mengacu pada Peraturan Menteri Kesehatan Republik Indonesia Nomor 416/MENKES/PER/IX/1990 tentang Syarat-syarat dan Pengawasan Kualitas Air Bersih dan Peraturan MenteriKesehatan Republik Indonesia Nomor 492/MENKES/PER/IV/2010 tentang Syarat-syaratdan Pengawasan Kualitas Air minum.  Kualitas air sumur masyarakat di sekitar TPAS Rawa Kucing mengalami penurunan setelah dilakukan pengujian terhadap beberapa parameter. Ada 6 parameter pemeriksaan yang mempunyai konsentrasi  melebihi baku mutu yang dipersyaratkan yaitu TDS (1600-1764 mg/L), Nitrat (10,5-37,8 mg/L), Amonia (3,50-66,21 mg/L), Besi (1,054-7,063 mg/L), Mangan (1,085-10,130 mg/L), dan Total Coliform (80-130 koloni/100 mL).Kata kunci : Air sumur, air lindi, TPAS, pencemaran, kualitas air


2019 ◽  
Vol 11 (8) ◽  
pp. 176
Author(s):  
Dixon Nohel Morales López ◽  
Ismael Montero Fernández ◽  
Selvin Antonio Saravia Maldonado ◽  
Francisco Luis Acosta Díaz ◽  
Luis Antonio Beltrán Alemán

Knowing the quality of water for human consumption is of utmost importance in the development of a country, since the poor quality of this vital liquid can be a source of diseases for the health of the population. The present work was carried out in the community El Comején, Masaya, in the Republic of Nicaragua, where microbiological analyzes were carried out in three sampling points (one well drilled and two taps). The physicochemical and chemical analyzes are in accordance with the norms established by CARPE, highlighting sodium as a major element with a concentration of 48.6 mg L-1 and potassium with 21.08 mg L-1. On the other hand, biological parameters such as total coliforms, thermotolerable coliforms, E. coli and fecal enterococos were analyzed, being found in some sampling points, values of total coliforms of 110 NMP 100 mL-1 being above the established limits, requiring a treatment additional to be suitable for human consumption.


Sign in / Sign up

Export Citation Format

Share Document