Carboxytherapy – Non-Invasive Method in Dermatology, Aesthetic Dermatology and some other Branches of Medicine

Carboxytherapy- therapeutically applied carbon dioxide injections have been used in balneotherapy since 1932. In the last four years however, this treatment modality has become the centre of attention as a unique method applicable in dermatology, aesthetic dermatology, anti-aging medicine. Many clinics of aesthetic medicine promote this unique method as minimum invasive and non-aggressive, comfortable for the patient and producing excellent effects without the risk of undesired side effects. In aesthetic dermatology this method may be applied as a rejuvenation modality and is employed mainly due to its classic vasodilatation effect and its capacity to foster intradermal collagen restructuring.

2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Tibor Kovács

AbstractOlfaction is frequently mentioned as a “neglected sense”, although the olfactory system has several interesting and unique anatomical and physiological features. Olfactory involvement is present in several degenerative disorders, especially in Alzheimer’s disease (AD). The peripheral and central parts of the olfactory system are damaged even in the early stages of AD, manifesting in profound olfactory deficits. Besides the early pathology, the olfactory system may be involved in the pathogenesis of AD by providing a route of entry for pathological agents still unknown. In contrast to this olfactory vector hypothesis, the olfactory system can be used to deliver therapeutic agents in AD, such as nerve growth factor and insulin, by decreasing the side-effects of the therapy or providing a non-invasive method of delivery.


Author(s):  
I.S. Bakulin ◽  
A.G. Poydasheva ◽  
D.Yu. Lagoda ◽  
K.M. Evdokimov ◽  
A.Kh. Zabirova ◽  
...  

Rhythmic transcranial magnetic stimulation (rTMS) is a non-invasive method for brain stimulation, widely used in the treatment of various diseases and in research. In this regard, the problems of rTMS safety and tolerability are becoming especially relevant. Most studies describe only serious side effects of rTMS, which, in fact, are extremely rare. Other side effects which affect rTMS tolerability have been studied to a much lesser extent. The objective of the study is to examine all side effects which occur during and after rTMS sessions through prospective open observation of patients and healthy volunteers. Materials and Methods. Using standardized questionnaires, the authors analyzed the incidence of side effects during high-frequency rTMS and within 24 hours after the procedure in 51 patients with various diseases of the nervous system and in 11 healthy volunteers. Results. The overall frequency of side effects was 59.5 % during stimulation and 50.2 % within 24 hours after the procedure. Serious side effects, which led to cessation of stimulation were recorded in 5 % of cases (n=3). They were associated with the syncope development (n=1) and severe headache (n=2). During rTMS, the most frequent manifestations of side effects were drowsiness (30.4 %), headache (25.8 %) and facial muscle contraction (14.7 %). Twenty-four hours after rTMS the most common manifestations were headache (15.7 %), mood changes (10.2 %) and mental alertness problems (9.4 %). It was found out, that headache was statistically more frequent at the beginning of the rTMS course. During rTMS, headache is often not so heavy and it is usually throbbing. However, within 24 hours after stimulation headache is usually moderate, pressing or dull. Conclusion. The obtained data confirm the importance of using standardized questionnaires for studying side effects and developing methods for their prevention and relief. Keywords: transcranial magnetic stimulation, non-invasive brain stimulation, safety, tolerance, side effects, headache, syncope.


2022 ◽  
Vol 2 ◽  
Author(s):  
Tim Granata ◽  
Bernd Rattenbacher ◽  
Gernot John

Bioreactors in space have applications from basic science to microbial factories. Monitoring bioreactors in microgravity has challenges with respect to fluidics, aeration, sensor size, sample volume and disturbance of medium and cultures. We present a case study of the development of small bioreactors and a non-invasive method to monitor dissolved oxygen, pH, and biomass of yeast cultures. Two different bioreactor configurations were tested for system volumes of 60 ml and 10.5 ml. For both configurations, the PreSens SFR vario, an optical sensor array, collected data autonomously. Oxygen and pH in the cultures were monitored using chemically doped spots, 7 mm in diameter, that were fixed to the bottom of sampling chambers. Spots emitted a fluorescent signal for DO and pH when reacted with oxygen molecules and hydrogen ions, respectively. Biomass was sensed using light reflectance at centered at 605 nm. The, optical array had three light detectors, one for each variable, that returned signals that were pre- and post-calibrated. For heterotrophic cultures requiring oxygen and respiring carbon dioxide, a hollow fiber filter, in-line with the optical array, oxygenated cells and remove carbon dioxide. This provided oxygen levels that were sufficient to maintain aerobic respiration for steady state conditions. Time series of yeast metabolism in the two bioreactors are compared and discussed. The bioreactor configurations can be easily be modified for autotrophic cultures such that carbon dioxide is enhanced and oxygen removed, which would be required for photosynthetic algal cultures.


2001 ◽  
Vol 12 (1) ◽  
pp. 8-14
Author(s):  
Gertraud Teuchert-Noodt ◽  
Ralf R. Dawirs

Abstract: Neuroplasticity research in connection with mental disorders has recently bridged the gap between basic neurobiology and applied neuropsychology. A non-invasive method in the gerbil (Meriones unguiculus) - the restricted versus enriched breading and the systemically applied single methamphetamine dose - offers an experimental approach to investigate psychoses. Acts of intervening affirm an activity dependent malfunctional reorganization in the prefrontal cortex and in the hippocampal dentate gyrus and reveal the dopamine position as being critical for the disruption of interactions between the areas concerned. From the extent of plasticity effects the probability and risk of psycho-cognitive development may be derived. Advance may be expected from insights into regulatory mechanisms of neurogenesis in the hippocampal dentate gyrus which is obviously to meet the necessary requirements to promote psycho-cognitive functions/malfunctions via the limbo-prefrontal circuit.


Sign in / Sign up

Export Citation Format

Share Document