Review on phytochemicals and pharmacological activities of Boerhaavia diffusa Linn.

2019 ◽  
Vol 12 (04) ◽  
pp. 1675-1682 ◽  
Author(s):  
Harpreet Kaur

Boerhaavia diffusa belonging to family Nyctaginaceae has a wide distribution, occurring on major part of the globe. It is known as Punarnava in Ayurveda and is a main ingredient in many formulations of Ayurveda. It is used as traditional medicine by indigenous people of many countries in the world for its protective role against inflammation, prostatic hyperplasia, diabetes, cancer, gastrointestinal problems, arthritis etc. The whole plant contains numerous bioactive compounds which are responsible for its pharmacological activities. Experiments are being done to evaluate full potential of the plant. The present review focuses on the bioactive compounds and pharmacological activities of B. diffusa. The study is carried out with the aim that it will be helpful for more research and wide acceptance of B. diffusa so that the plant which till now was used by indigenous people for its medicinal properties will become an ingredient of major mainstream medicines used to treat chronic human ailments.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
F Ghavidel ◽  
MM Zarshenas ◽  
A Sakhteman ◽  
A Gholami ◽  
Y Ghasemi ◽  
...  

1962 ◽  
Vol 40 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Darrell N. Ward ◽  
Earl F. Walborg ◽  
Harry S. Lipscomb ◽  
Roger Guillemin

ABSTRACT Fractionation of monkey pituitary glands gave an oxytocin fraction in low yield which showed a counter-current distribution coefficient equivalent to that obtained with oxytocin from other species. Fractionation and chromatography of monkey vasopressin on carboxymethyl cellulose gave arginine-vasopressin of 60% purity, based on amino acid analysis and specific activity. Counter-current distribution on a small scale gave arginine-vasopressin of 89% purity. Reports by others that monkey pituitary glands contain arginine-vasopressin, based on pharmacological activities, are substantiated by the chemical data presented here.


Author(s):  
Ganesh Kumar Y ◽  
Pranitha D ◽  
Phaneendra D ◽  
Madhava Reddy Ch

Various types of conditions exist in the body that causes fever and pain. Drugs that are used to treat fever are called antipyretics, and those are usually prescribed to treat elevated body temperature. But those drugs result in many other side effects like ulcers, perforations, bleedings and obstructions, which make their use questionable and limiting. Medicinal plants are used in the treatment of diseases from the starting of the human race and the process; they had been subjected to rigorous investigations and tests to establish a scientific proof and validation of the various pharmacological activities and their respective mechanisms of action in treating the herbs. Considering the anti-inflammatory properties of the plant, Xylocarpus mekongesis was investigated for its antipyretic activity in yeast method and 3doses out of which 00mg/kg body weight showed a better activity compared to the standard drug and other extracts too. The mechanism of action was similar to the paracetamol action that is inhibition of prostaglandin synthesis.


Author(s):  
Shukla PK ◽  
Singh MP ◽  
Patel R

Indole and its derivatives have engaged a unique place in the chemistry of nitrogen heterocyclic compounds. The recognition of the plant growthhormone, heteroauxin, the significant amino acids, tryptamine & tryptophan and anti-inflammatory drug, indomethacine are the imperativederivatives of indole which have added stimulus to this review work. Isatin (1H-indole-2,3-dione), an indole derivative of plant origin. Althoughit is a naturally occurring compound, but was synthesized by Erdmann and Laurent in 1840 before it was found in nature. Isatin is a versatileprecursor for many biologically active molecules and its diversified nature makes it a versatile substrate for further modifications. It is concernedin many pharmacological activities like anti-malarial, antiviral, anti-allergic, antimicrobial etc; isatin and its derivatives have been also found todemonstrate promising outcomes against various cancer cell lines. This review provides a brief overview on the recent advances and futureperspectives on chemistry and biological aspects of isatin and its derivatives reported in the recent past.


2020 ◽  
Vol 27 (40) ◽  
pp. 6864-6887 ◽  
Author(s):  
Mohd Adil Shareef ◽  
Irfan Khan ◽  
Bathini Nagendra Babu ◽  
Ahmed Kamal

Background:: Imidazo[2,1-b]thiazole, a well-known fused five-membered hetrocycle is one of the most promising and versatile moieties in the area of medicinal chemistry. Derivatives of imidazo[2,1-b]thiazole have been investigated for the development of new derivatives that exhibit diverse pharmacological activities. This fused heterocycle is also a part of a number of therapeutic agents. Objective:: To review the extensive pharmacological activities of imidazo[2,1-b]thiazole derivatives and the new molecules developed between 2000-2018 and their usefulness. Method:: Thorough literature review of all relevant papers and patents was conducted. Conclusion:: The present review, covering a number of aspects, is expected to provide useful insights in the design of imidazo[2,1-b]thiazole-based compounds and would inspire the medicinal chemists for a comprehensive and target-oriented information to achieve a major breakthrough in the development of clinically viable candidates.


2019 ◽  
Vol 25 (6) ◽  
pp. 715-728 ◽  
Author(s):  
Hai-Yue Lan ◽  
Bin Zhao ◽  
Yu-Li Shen ◽  
Xiao-Qin Li ◽  
Su-Juan Wang ◽  
...  

Momordica cochinchinensis (Lour.) Spreng (M. cochinchinensis) is a deciduous vine that grows in Southeast Asia. It is known as gac in Vietnam and as Red Melon in English. Gac is reputed to be extremely benificial for health and has been widely used as food and folk medicine in Southeast Asia. In China, the seed of M. cochinchinensis (Chinese name: Mu biezi) is used as traditional Chinese medicine (TCM) for the treatment of various diseases. More than 60 chemical constituents have been isolated from M. cochinchinensis. Modern pharmacological studies and clinical practice demonstrate that some chemical constituents of M. cochinchinensis possess wide pharmacological activities, such as anti-tumor, anti-oxidation, anti-inflammatory, etc. This paper reviews the phytochemistry, pharmacological activities, toxicity, and clinical application of M. cochinchinensis, aiming to bring new insights into further research and application of this ancient herb.


2020 ◽  
Vol 26 ◽  
Author(s):  
Shaik Ibrahim Khalivulla ◽  
Arifullah Mohammed ◽  
Kokkanti Mallikarjuna

Background: Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant based natural products had been in use from ancient time as ethnomedicine for the treatment of several diseases including diabetes. As a result of that, there are several reports on plant based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. This kind of reports are essential to pool the available information to one source followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to few numbers of potential compounds from hundreds, whom can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. Methods: Phytochemicals along with their potential antidiabetic property were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species is also included. Results: The scrutiny of literature led to identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert antidiabetic properties by improving or mimicking the insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be active potential compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are from triterpenoids, 13 flavonoids and 7 are from alkaloids. Among all the 44 plant species, maximum number (7) of compounds are reported from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. Conclusion: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish the therapeutic drug candidates.


Sign in / Sign up

Export Citation Format

Share Document