scholarly journals Transformation of the montmorillonite structure and its adsorption properties due to the thermochemical treatment

2019 ◽  
Vol 64 (3) ◽  
pp. 300-319
Author(s):  
V. V. Krupskaya ◽  
S. V. Zakusin ◽  
E. A. Tyupina ◽  
O. V. Dorzhieva ◽  
M. S. Chernov ◽  
...  

Complex studies revealed changes in the composition, structure, and properties of bentonite clays from the Taganskoye (Kazakhstan) and Dashkovskoe (Moscow region) deposits due to the thermochemical treatment. The leaching of cations from the interlayer and octahedral positions, protonation of the interlayer and OH-groups, leads to modification of the interlayer and 2:1 layer composition, which in turn contributes to significant changes in properties:-a decrease in the cation exchange capacity due to a decrease in the layer charge and increase in the specific surface due to destruction and partial amorphization. Bentonites from the Dashkovskoye deposit demonstrated higher resistance to thermochemical treatment than the bentonites from the Taganskoye deposit due to the protecting effect of the organic matter. Results of the work showed that even after quite intensive thermochemical treatment (13M HNO3, 90 °C, 5 hours), bentonite clays retain a significant part of the adsorption capacity.

Author(s):  
Victoria V. Krupskaya ◽  
Sergey V. Zakusin ◽  
Ekaterina A. Tyupina ◽  
Olga V. Dorzhieva ◽  
Anatoliy P. Zhukhlistov ◽  
...  

The paper discusses the mechanism of montmorillonite structure alteration and bentonites properties modification (on the example of samples from clay deposit Taganka, Kazakhstan) due to the thermochemical treatment (treatment with inorganic acid solutions at different temperatures, concentrations and reaction times). With the use of the suit of methods certain processes were distinguished: transformation of montmorillonite structure, which appears in the leaching of interlayer and octahedral cations, protonation of the interlayer and OH groups at octahedral sheets. Changes in the structure of the 2:1 layer of montmorillonite and its interlayer result in significant changes in the properties – reduction of cation exchange capacity and an increase of specific surface area. The results of the work showed that bentonite clays retain a significant portion of its adsorption properties even after the long term and intense thermochemical treatment (6M HNO3, 60°C, 108 hours)


Weed Science ◽  
1974 ◽  
Vol 22 (5) ◽  
pp. 454-459 ◽  
Author(s):  
J.B. Weber ◽  
S.B. Weed ◽  
T.W. Waldrep

An organic muck and a montmorillonite clay were incorporated into the surface 7.6 cm of a structureless sandy soil at rates ranging from 26,880 to 89,600 kg/ha. Prometryne [2,4-bis(isopropylamino)-6-(methylthio)-s-triazine] and fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea] were surface-applied and trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) were incorporated at two rates each in 1968, 1969, and 1970. Organic matter greatly reduced the biological activity of all three herbicides. Montmorillonite clay greatly reduced the activity of prometryne, slightly decreased the activity of fluometuron, and had no significant effect on trifluralin activity in all but the first year of the study. Both soil additives increased the cation exchange capacity of the soil. Muck decreased soil pH while montmorillonite increased it.


2013 ◽  
Vol 5 (4) ◽  
Author(s):  
Nenad Tomašić ◽  
Štefica Kampić ◽  
Iva Cindrić ◽  
Kristina Pikelj ◽  
Mavro Lučić ◽  
...  

AbstractThe adsorption properties in terms of cation exchange capacity and their relation to the soil and sediment constituents (clay minerals, Fe-, Mn-, and Al-oxyhydroxides, organic matter) were investigated in loess, soil-loess transition zone, and soil at four loess-soil sections in North-Western Croatia. Cation exchange capacity of the bulk samples, the samples after oxalate extraction of Fe, Mn and Al, and after removal of organic matter, as well as of the separated clay fraction, was determined using copper ethylenediamine. Cation exchange capacity (pH∼7) of the bulk samples ranges from 5 to 12 cmolc/kg in soil, from 7 to 15 cmolc/kg in the soil-loess transition zone, and from 12 to 20 cmolc/kg in loess. Generally, CEC values increase with depth. Oxalate extraction of Fe, Mn, and Al, and removal of organic matter cause a CEC decrease of 3–38% and 8–55%, respectively, proving a considerable influence of these constituents to the bulk CEC values. In the separated clay fraction (<2 μm) CEC values are up to several times higher relative to those in the bulk samples. The measured CEC values of the bulk samples generally correspond to the clay mineral content identified. Also, a slight increase in muscovite/illite content with depth and the vermiculite occurrence in the loess horizon are concomitant with the CEC increase in deeper horizons, irrespective of the sample pretreatment.


2012 ◽  
Vol 500 ◽  
pp. 142-148 ◽  
Author(s):  
Wen Xing Lü ◽  
Hong Jiang Zhang ◽  
Yu He Wu ◽  
Jin Hua Cheng ◽  
Jian Qiang Li ◽  
...  

Through the research and sampling analysis on different plant hedgerow in sloped farmland in Three Gorges reservoir area, we will conduct research on the impact of plant hedgerow in Three Gorges on the chemicophysical properties of soil and soil erosion. The results show that the plant hedgerow mainly composed by Morus alba, Citrus reticulata, Zanthoxylum bungeanum, Vitex negundoand Begonia fimbristipula can decrease the soil density as well as sand content and increase soil porosity, soil water content, silt content and clay content to some extent. The organic matter, nitrogen, phosphorus, potassium and cation exchange capacity and other chemical indices of soil in different locations in plant hedgerow indicate as maximum in on-band, minimum in inter-band, middle both upper-band and below-band. In the same slop with no plant hedgerow, the organic matter, nitrogen, phosphorus, potassium and cation exchange capacity and other chemical indices of soil show a trend of increasing from the top to the bottom of the slop, which reveals that these substances own a feature of accumulation by moving to the bottom. The strength of soil anti-corrosion in different plant hedgerow is: Vitex negundoand (79.2%)> Citrus reticulata (36.4%)> Morus alb (22.4%)> Zanthoxylum bungeanum (18.9%)> Begonia fimbristipula (15.3%)> CK (8.7%), and the soil anti-corrosion indices in plant hedgerow are decreasing with the increase of soil immersion time, besides, the former and the latter are 3 times polynomial function. For those 5 plant hedgerows, Vitex negundoand owns the best impact on improving soil chemicophysical properties and reducing soil erosion.


Soil Research ◽  
1994 ◽  
Vol 32 (5) ◽  
pp. 1015
Author(s):  
PW Moody

Krasnozems (Ferrosols) characteristically have high contents of citrate-dithionite extractable Fe and moderate to high contents of clay throughout the profile. They typically have low cation exchange capacity (2-20 cmolc kg-1), high P sorbing ability, and a significant anion exchange capacity at depth. The chemistry of krasnozems is dominated by the variable charge characteristics of the organic matter and the oxy-hydroxides of Fe and Al which occur in the predominantly kaolinitic clay fraction. The effects of surface charge characteristics, organic matter, and extractable iron and aluminium on the cation and anion exchange capacities, P sorbing abilities and pH buffer capacities of Australian krasnozems are reviewed. A selection of reports of nutrient deficiencies and toxicities in these soils is presented and briefly discussed. Published data on the chemical composition of the soil solutions of krasnozems are reviewed. Data from a suite of paired (undeveloped and developed) krasnozem profiles from eastern Australia indicate that exchangeable Ca and Mg, effective cation exchange capacity (ECEC), pH buffer capacity (pHBC) and total N decrease significantly (P < 0.05) in the A horizon following development, while exchangeable K, ECEC and pHBC decrease (P < 0-05) in the B horizon. The decreases in the A horizon are shown to be a direct consequence of the decline in organic matter which occurs following development. Because of the crucial role that organic matter plays in the chemical fertility of krasnozems, they are less likely to maintain their fertility under exploitative conditions than other productive clay soils such as Vertosols. It is concluded that the sustainable use of krasnozems will depend on maintenance or enhancement of organic matter levels, maintenance of surface and subsoil pH by regular application of amendments, minimization of erosion, and replacement of nutrients removed in harvested products.


2017 ◽  
Vol 29 (2) ◽  
pp. 123-131
Author(s):  
Reshma Akter ◽  
Md Jamal Uddin ◽  
Md Faruque Hossain ◽  
Zakia Parveen

A study was carried out to evaluate the effects of brick manufacturing on phosphorus (P) and sulfur (S) concentrations in soil and plant collected from different distances of brick kilns in four AEZs of Bangladesh. Forty eight composite soil samples (0 - 15 cm depth) were collected from 48 points in 12 different sites at 0 m, 300 m, 800 m and 1500 m from brick kilns, where most (site 2, site 3, site 5, site 6, site 7, site 9 and site 10) of the brick kilns used coal for brick burning purposes. Plant samples (rice straw and different vegetables) were also collected from the respective fields except 0 m distances. Significantly (p ? 0.05) lower organic matter, cation exchange capacity, clay content and soil pH were found at 0 m distances compared to other distances. Highest concentration of total P in soil were recorded at 0 m distances and these concentrations decreased with increasing distances from the brick kilns in most of the sites; whereas available P is significantly lower at 0 m distances than that of other distances. Total and available concentration of S in soil followed the trend 0 m>300 m>800 m>1500 m. Maximum accumulation of P (69.15 mg kg-1) and S (0.14%) in plant was found at 800 m away from the brick kiln.Bangladesh J. Sci. Res. 29(2): 123-131, December-2016


1968 ◽  
Vol 48 (1) ◽  
pp. 53-63 ◽  
Author(s):  
J. S. Clark ◽  
W. E. Nichol

Heating in hydrogen peroxide, dilute oxalic acid, and dilute aluminum oxalate did not change the effective cation exchange capacity (CEC) or the pH-7 CEC of Wyoming bentonite and Alberni clay soil containing excess Al(OH)x. This indicated that treatment of soils with H2O2 to oxidize organic matter and the possible production of oxalates during oxidation did not change the CEC values of the inorganic fraction of soils even if some clay exchange sites were blocked by hydrous oxides of Al.With soils of pH less than approximately 5.4, oxidation of organic matter did not change the effective CECs although the pH-7 CEC values were decreased. Thus, organic matter in acid soils appeared to have little or no effective CEC. Because of this and the negligible effect of H2O2 oxidation on the CEC values of clays, the difference of the pH-7 CEC of soils before and after H2O2 oxidation provided a simple means of estimating the amount of organic pH-dependent CEC in acid soils.The amount of organically derived pH-dependent CEC was determined in a number of soils by means of peroxide oxidation. The technique provided a useful indication of the quantities of sesquioxide–organic matter complexes accumulated in medium- and fine-textured soils.


1999 ◽  
Vol 79 (3) ◽  
pp. 501-504 ◽  
Author(s):  
B. J. Zebarth ◽  
G. H. Neilsen ◽  
E. Hogue ◽  
D. Neilsen

Sandy, infertile soils can benefit from the addition of organic waste amendments. Annual applications of organic wastes for as long as 4 yr increased soil organic matter content, decreased soil bulk density, and increased soil water retention of a coarse-textured soil. However, soil water-holding capacity was not necessarily increased, and there was a limited effect on soil cation exchange capacity. Key words: Cation exchange capacity, water retention, soil pH, soil organic matter, soil bulk density


Sign in / Sign up

Export Citation Format

Share Document