scholarly journals On Semi-Classical Approach to Materials Electronic Structure

Author(s):  
Levan Chkhartishvili

Materials atomic structure, ground-state and physical properties as well as their chemical reactivity mainly are determined by electronic structure. When first-principles methods of studying the electronic structure acquire good predictive power, the best approach would be to design new functional materials theoretically and then check experimentally only most perspective ones. In the paper, the semi-classical model of multi-electron atom is constructed, which makes it possible to calculate analytically (in special functions) the electronic structure of atomic particles themselves and materials as their associated systems. Expected relative accuracy makes a few percent, what is quite acceptable for materials science purposes.

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 973
Author(s):  
Yulia Sokolovskaya ◽  
Olga Miroshkina ◽  
Danil Baigutlin ◽  
Vladimir Sokolovskiy ◽  
Mikhail Zagrebin ◽  
...  

In the search for new magnetic functional materials, non-stoichiometric compounds remain a relatively unexplored territory. While experimentalists create new compositions looking for improved functional properties, their work is not guided by systematic theoretical predictions. Being designed for perfect periodic crystals, the majority of first-principles approaches struggle with the concept of a non-stoichiometric system. In this work, we attempt a systematic computational study of magnetic and structural properties of Ni–Mn–Ga, mapped onto ternary composition diagrams. Compositional stability was examined using the convex hull analysis. We show that the cubic austenite has its stability region close to the stoichiometric Ni2MnGa, in agreement with experimental data, while the tetragonal martensite spreads its stability over a wider range of Mn and Ni contents. The unstable compositions in both austenite and martensite states are located in the Ga-rich corner of the ternary diagram. We note that simultaneous stability of the austenite and martensite should be considered for potentially stable compounds suitable for synthesis. The majority of compounds are predicted to be ferrimagnetically ordered in both austenitic and martensitic states. The methodology used in this work is computationally tractable, yet it delivers some predictive power. For experimentalists who plan to synthesize stable Ni–Mn–Ga compounds with ferromagnetic order, we narrow the target compositional range substantially.


Author(s):  
Md. Didarul Islam Bhuyan ◽  
Rana Hossain ◽  
Ferdous Ara ◽  
Mohammed Abdul Basith

Here, the first-principles predictions on the structural stability, magnetic behavior and electronic structure of B-site ordered double perovskite Nd$_2$CrFeO$_6$ have been reported. Initially, the ground state of the parent single...


2010 ◽  
Vol 434-435 ◽  
pp. 448-450
Author(s):  
J. Feng ◽  
Wei Pan ◽  
B. Xiao ◽  
Rui Fen Wu ◽  
Chun Lei Wan ◽  
...  

The ground state electronic structure of Gd2SrAl2O7 are calculated using first principles, we found that only the Density functional theory (DFT) + U can correctly describe the Gd2SrAl2O7 as a charge-transfer type insulator. Gd-O and Al-O bonds have strong covalent character and Sr-O is a perfect ionic bond. The band gap of Gd2SrAl2O7is 3.9 eV, and it is opened due the large U correction for 4f orbit.


2013 ◽  
Vol 665 ◽  
pp. 43-48
Author(s):  
Rajagopalan Umamaheswari ◽  
M. Yogeswari ◽  
G. Kalpana

The first-principles calculation within density functional theory is used to study in detail the electronic structure and ground state properties of alkali-metal oxoargenates A4[Ag4O4] (A= Na, K and Rb). The total energies calculated within the atomic sphere approximation (ASA) were used to determine the ground state properties such as equilibrium lattice parameter, c/a ratio, bulk modulus and cohesive energy. The theoretically calculated equilibrium lattice constants values are in well agreement with the available experimental values. The electronic band structures, total and partial density of states are calculated. The result of electronic band structure shows that the KAgO and RbAgO are direct band gap semiconductors with their gap lying between the Γ-Γ points, whereas NaAgO is found to be an indirect band gap semiconductor with its gap lying between Z-Γ points.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 286-292 ◽  
Author(s):  
P. E. A. TURCHI ◽  
L. T. REINHARD ◽  
M. SLUITER

Order-disorder phenomena and structural transformations in substitutional alloys are studied with a proper combination of quantum mechanics and statistical thermodynamics. The methodology is briefly presented and its predictive capabilities are illustrated for various alloys, including the bcc-based Ti-V, Ti-Fe and Cr-Fe systems, in terms of electronic structure, ground-state and short-range order diffuse scattering properties, and finally phase diagram results.


2009 ◽  
Vol 23 (25) ◽  
pp. 5027-5037 ◽  
Author(s):  
R. D. EITHIRAJ ◽  
G. JAIGANESH ◽  
G. KALPANA

First-principles calculations have been performed to investigate the electronic structure and ground-state properties of alkali-metal Selenides (M2Se) and Tellurides (M2Te) [ M: Li, Na, K ] using the Tight-Binding Linear Muffin-Tin Orbital (TB-LMTO) method. The exchange correlation energy is described within the local density approximation (LDA) using the von Barth and Hedin parameterization scheme. At ambient conditions, these compounds are found to crystallize in the face center cubic antifluorite (anti- CaF 2-type) structure. Ground-state properties such as total energy, equilibrium lattice parameter, and bulk modulus are calculated for these compounds. The calculated equilibrium lattice parameter is in agreement with experimental result. From the electronic structure calculations, we find that Li 2 Se , Li 2 Te , K 2 Se , and K 2 Te are indirect bandgap semiconductors, whereas Na 2 Se and Na 2 Te are direct bandgap semiconductors. The present results are compared with the earlier results of series of alkali-metal sulfides (M2S) and alkali-metal oxides ( M 2 O ), allowing us to make predictions about the total energy, bulk modulus, valence-band width, and bandgap behavior of the rest of the alkali-chalcogenide crystals.


2021 ◽  
Author(s):  
◽  
Aditya Putatunda

Study of the quantum mechanical nature of a material provides invaluable understanding of its underlying mechanisms governing their fascinating novel properties. Density functional based first-principles methods provide us with the necessary tools to approximate the Schrodinger's equation for many-electron periodic solids. Starting from the atomic position of their constituent atoms, using one of the most accurate methods of all-electron calculations, here in this thesis, I present my investigations of several such different materials in light of these novel phenomena. In the first chapter, I have discussed the basics of this tool and other theoretical concepts that work in the background in order to obtain reliant and consistent results. The results on each of these materials have been arranged around the following six chapters. The second chapter, in its two sections, I demonstrated these methods via two materials: a) the widely known industrial compound TiO2 where I addressed the long standing theory versus experiment disparity of the energy ordering of its two most used polymorphs. Our results, like most of the previous theoretical studies gave anatase as its ground state. In the next section, I investigated the recently synthesized layered monoclinic material: NaSbSe2. The results on its superior electronic and transport property shows its potential as a thermoelectric (TE) candidate. The investigation of TE properties in next chapter focusses on the Lorenz number where a certain widely used prescription for its approximation has been closely examined. Comparing against our first-principles based transport results on few well-known TEs as well as the ideal single parabolic band model, I found that for some materials the prescription works well within acceptable deviations. However, for TEs with complex band structure the deviations are too big which suggests precaution to its use since efficient TEs are often marked by such complex electronic structures only. The following chapters explore magnetism. Starting with the discussion of the pervoskite compound MnSeO3, we found our results to be predicting its true magnetic ground state order. The study of its energetics and electronic structure, in comparison to its non-magnetic analogue ZnSeO3, its magnetic nature was determined to be of local moment nature. Showing unconventional structural properties for a pervoskite compound, doping and spin-wave dispersion investigations will probably be useful. In the next two chapters, I focus on the novel material Sr3Ru2O7. Widely considered as a classic quantum critical material, I discuss why it is important to understand the nature of fluctuations associated with its quantum critical properties. For this purpose, it is important to know the low-energy metastable states in competition with its ground state. The first-principles investigation based survey yielded the striped E-type antiferromagnetic state that lies closest to the ground state. The magnetic-energy ordering in combination to its electronic structure properties, e.g. the density of states suggest its magnetism to be of itinerant nature. My results on the electronic transport indicates that only this striped E-type ordered state carries a distinct anisotropy among its in-plane conductivity components. This result is particularly important since the material Sr3Ru2O7 is experimentally known to display a similar transport anisotropy of the same order under specific magnetic field.


Sign in / Sign up

Export Citation Format

Share Document