scholarly journals Validation of a method for determining the depth of glacial melt ponds using satellite imagery

2011 ◽  
Vol 52 (59) ◽  
pp. 15-22 ◽  
Author(s):  
William A. Sneed ◽  
Gordon S. Hamilton

AbstractIn situ measurements of water depth and optical properties of a melt pond in East Greenland were collected to verify a previously developed algorithm for determining supraglacial water depths using satellite imagery. That algorithm made five simplifying assumptions which we have tested using the in situ data and laboratory analysis of water samples. We conclude that three assumptions were justified, one was not and the remaining one (substrate homogeneity) requires further study, but probably has a minor effect on the retrieved water depths and volumes. Measured water depths of 0.2–3.0m agree well with those derived from a satellite image using the algorithm. Numerically modeled depths also agree well with those from the satellite image. This new analysis demonstrates the validity of our algorithm as a means for determining meltwater volumes in supraglacial ponds and lakes.

2004 ◽  
Vol 287 (1) ◽  
pp. C36-C45 ◽  
Author(s):  
Takashi Murayama ◽  
Yasuo Ogawa

We showed that frog α-ryanodine receptor (α-RyR) had a lower gain of Ca2+-induced Ca2+ release (CICR) activity than β-RyR in sarcoplasmic reticulum (SR) vesicles, indicating selective “stabilization” of the former isoform (Murayama T and Ogawa Y. J Biol Chem 276: 2953–2960, 2001). To know whether this is also the case with mammalian RyR1, we determined [3H]ryanodine binding of RyR1 and RyR3 in bovine diaphragm SR vesicles. The value of [3H]ryanodine binding (B) was normalized by the number of maximal binding sites (Bmax), whereby the specific activity of each isoform was expressed. This B/Bmax expression demonstrated that ryanodine binding of individual channels for RyR1 was <15% that for RyR3. Responses to Ca2+, Mg2+, adenine nucleotides, and caffeine were not substantially different between in situ and purified isoforms. These results suggest that the gain of CICR activity of RyR1 is markedly lower than that of RyR3 in mammalian skeletal muscle, indicating selective stabilization of RyR1 as is true of frog α-RyR. The stabilization was partly eliminated by FK506 and partly by solubilization of the vesicles with CHAPS, each of which was additive to the other. In contrast, high salt, which greatly enhances [3H]ryanodine binding, caused only a minor effect on the stabilization of RyR1. None of the T-tubule components, coexisting RyR3, or calmodulin was the cause. The CHAPS-sensitive intra- and intermolecular interactions that are common between mammalian and frog skeletal muscles and the isoform-specific inhibition by FKBP12, which is characteristic of mammals, are likely to be the underlying mechanisms.


2018 ◽  
Vol 12 (6) ◽  
pp. 1921-1937 ◽  
Author(s):  
Aleksey Malinka ◽  
Eleonora Zege ◽  
Larysa Istomina ◽  
Georg Heygster ◽  
Gunnar Spreen ◽  
...  

Abstract. Melt ponds occupy a large part of the Arctic sea ice in summer and strongly affect the radiative budget of the atmosphere–ice–ocean system. In this study, the melt pond reflectance is considered in the framework of radiative transfer theory. The melt pond is modeled as a plane-parallel layer of pure water upon a layer of sea ice (the pond bottom). We consider pond reflection as comprising Fresnel reflection by the water surface and multiple reflections between the pond surface and its bottom, which is assumed to be Lambertian. In order to give a description of how to find the pond bottom albedo, we investigate the inherent optical properties of sea ice. Using the Wentzel–Kramers–Brillouin approximation approach to light scattering by non-spherical particles (brine inclusions) and Mie solution for spherical particles (air bubbles), we conclude that the transport scattering coefficient in sea ice is a spectrally independent value. Then, within the two-stream approximation of the radiative transfer theory, we show that the under-pond ice spectral albedo is determined by two independent scalar values: the transport scattering coefficient and ice layer thickness. Given the pond depth and bottom albedo values, the bidirectional reflectance factor (BRF) and albedo of a pond can be calculated with analytical formulas. Thus, the main reflective properties of the melt pond, including their spectral dependence, are determined by only three independent parameters: pond depth z, ice layer thickness H, and transport scattering coefficient of ice σt.The effects of the incident conditions and the atmosphere state are examined. It is clearly shown that atmospheric correction is necessary even for in situ measurements. The atmospheric correction procedure has been used in the model verification. The optical model developed is verified with data from in situ measurements made during three field campaigns performed on landfast and pack ice in the Arctic. The measured pond albedo spectra were fitted with the modeled spectra by varying the pond parameters (z, H, and σt). The coincidence of the measured and fitted spectra demonstrates good performance of the model: it is able to reproduce the albedo spectrum in the visible range with RMSD that does not exceed 1.5 % for a wide variety of melt pond types observed in the Arctic.


2017 ◽  
Author(s):  
Tran Thi Van ◽  
Ha Duong Xuan Bao ◽  
Pham Thi Anh My ◽  
Tran Lap Phong ◽  
Tran Viet Tri

2021 ◽  
Author(s):  
Audrey Jolivot ◽  
Valentine Lebourgeois ◽  
Mael Ameline ◽  
Valérie Andriamanga ◽  
Beatriz Bellón ◽  
...  

Abstract. The availability of crop type reference datasets for satellite image classification is very limited for complex agricultural systems as observed in developing and emerging countries. Indeed, agricultural land use is very dynamic, agricultural census are often poorly georeferenced, and crop types are difficult to photo-interpret directly from satellite imagery. In this paper, we present nine datasets collected in a standardized manner between 2013 and 2020 in seven tropical and subtropical countries within the framework of the international JECAM (Joint Experiment for Crop Assessment and Monitoring) initiative. These quality-controlled datasets are distinguished by in situ data collected at field scale by local experts, with precise geographic coordinates, and following a common protocol. Altogether, the datasets completed 27 074 polygons (20 257 crop and 6 817 non-crop) documented by detailed keywords. These datasets can be used to produce and validate agricultural land use maps in the tropics, but also, to assess the performances and the robustness of classification methods of cropland and crop types/practices in a large range of tropical farming systems. The dataset is available at https://doi.org/10.18167/DVN1/P7OLAP.


2021 ◽  
Author(s):  
Duccio Rocchini ◽  
Matteo Marcantonio ◽  
Daniele Da Re ◽  
Giovanni Bacaro ◽  
Enrico Feoli ◽  
...  

AbstractAimThe majority of work done to gather information on Earth diversity has been carried out by in-situ data, with known issues related to epistemology (e.g., species determination and taxonomy), spatial uncertainty, logistics (time and costs), among others. An alternative way to gather information about spatial ecosystem variability is the use of satellite remote sensing. It works as a powerful tool for attaining rapid and standardized information. Several metrics used to calculate remotely sensed diversity of ecosystems are based on Shannon’s Information Theory, namely on the differences in relative abundance of pixel reflectances in a certain area. Additional metrics like the Rao’s quadratic entropy allow the use of spectral distance beside abundance, but they are point descriptors of diversity, namely they can account only for a part of the whole diversity continuum. The aim of this paper is thus to generalize the Rao’s quadratic entropy by proposing its parameterization for the first time.InnovationThe parametric Rao’s quadratic entropy, coded in R, i) allows to represent the whole continuum of potential diversity indices in one formula, and ii) starting from the Rao’s quadratic entropy, allows to explicitly make use of distances among pixel reflectance values, together with relative abundances.Main conclusionsThe proposed unifying measure is an integration between abundance- and distance-based algorithms to map the continuum of diversity given a satellite image at any spatial scale.


2015 ◽  
Vol 9 (1) ◽  
pp. 255-268 ◽  
Author(s):  
D. V. Divine ◽  
M. A. Granskog ◽  
S. R. Hudson ◽  
C. A. Pedersen ◽  
T. I. Karlsen ◽  
...  

Abstract. The paper presents a case study of the regional (≈150 km) morphological and optical properties of a relatively thin, 70–90 cm modal thickness, first-year Arctic sea ice pack in an advanced stage of melt. The study combines in situ broadband albedo measurements representative of the four main surface types (bare ice, dark melt ponds, bright melt ponds and open water) and images acquired by a helicopter-borne camera system during ice-survey flights. The data were collected during the 8-day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic, north of Svalbard at 82.3° N, from 26 July to 3 August 2012. A set of > 10 000 classified images covering about 28 km2 revealed a homogeneous melt across the study area with melt-pond coverage of ≈ 0.29 and open-water fraction of ≈ 0.11. A decrease in pond fractions observed in the 30 km marginal ice zone (MIZ) occurred in parallel with an increase in open-water coverage. The moving block bootstrap technique applied to sequences of classified sea-ice images and albedo of the four surface types yielded a regional albedo estimate of 0.37 (0.35; 0.40) and regional sea-ice albedo of 0.44 (0.42; 0.46). Random sampling from the set of classified images allowed assessment of the aggregate scale of at least 0.7 km2 for the study area. For the current setup configuration it implies a minimum set of 300 images to process in order to gain adequate statistics on the state of the ice cover. Variance analysis also emphasized the importance of longer series of in situ albedo measurements conducted for each surface type when performing regional upscaling. The uncertainty in the mean estimates of surface type albedo from in situ measurements contributed up to 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea-ice cover.


2016 ◽  
Vol 10 (4) ◽  
pp. 1707-1719 ◽  
Author(s):  
Kelly M. Brunt ◽  
Thomas A. Neumann ◽  
Jason M. Amundson ◽  
Jeffrey L. Kavanaugh ◽  
Mahsa S. Moussavi ◽  
...  

Abstract. Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in late 2017 and will carry the Advanced Topographic Laser Altimeter System (ATLAS), which is a photon-counting laser altimeter and represents a new approach to satellite determination of surface elevation. Given the new technology of ATLAS, an airborne instrument, the Multiple Altimeter Beam Experimental Lidar (MABEL), was developed to provide data needed for satellite-algorithm development and ICESat-2 error analysis. MABEL was deployed out of Fairbanks, Alaska, in July 2014 to provide a test dataset for algorithm development in summer conditions with water-saturated snow and ice surfaces. Here we compare MABEL lidar data to in situ observations in Southeast Alaska to assess instrument performance in summer conditions and in the presence of glacier surface melt ponds and a wet snowpack. Results indicate the following: (1) based on MABEL and in situ data comparisons, the ATLAS 90 m beam-spacing strategy will provide a valid assessment of across-track slope that is consistent with shallow slopes (< 1°) of an ice-sheet interior over 50 to 150 m length scales; (2) the dense along-track sampling strategy of photon counting systems can provide crevasse detail; and (3) MABEL 532 nm wavelength light may sample both the surface and subsurface of shallow (approximately 2 m deep) supraglacial melt ponds. The data associated with crevasses and melt ponds indicate the potential ICESat-2 will have for the study of mountain and other small glaciers.


2014 ◽  
Vol 11 (5) ◽  
pp. 7485-7519 ◽  
Author(s):  
N.-X. Geilfus ◽  
R. J. Galley ◽  
O. Crabeck ◽  
T. Papakyriakou ◽  
J. Landy ◽  
...  

Abstract. Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting sea ice, melt ponds and the underlying seawater associated with measurement of CO2 fluxes across first year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase of the ice temperature and the subsequent decrease of the bulk ice salinity promote a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond pCO2 is low (36 μatm). The percolation of this low pCO2 melt water into the sea ice matrix dilutes the brine resulting in a strong decrease of the in situ brine pCO2 (to 20 μatm). As melt ponds reach equilibrium with the atmosphere, their in situ pCO2 increase (up to 380 μatm) and the percolation of this high concentration pCO2 melt water increase the in situ brine pCO2 within the sea ice matrix. The low in situ pCO2 observed in brine and melt ponds results in CO2 fluxes of −0.04 to −5.4 mmol m–2 d–1. As melt ponds reach equilibrium with the atmosphere, the uptake becomes less significant. However, since melt ponds are continuously supplied by melt water their in situ pCO2 still remains low, promoting a continuous but moderate uptake of CO2 (~ −1mmol m–2 d–1). The potential uptake of atmospheric CO2 by melting sea ice during the Arctic summer has been estimated from 7 to 16 Tg of C ignoring the role of melt ponds. This additional uptake of CO2 associated to Arctic sea ice needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO2 budget.


Sign in / Sign up

Export Citation Format

Share Document