scholarly journals Crystallographic Structure of Polycrystalline Ice

1978 ◽  
Vol 21 (85) ◽  
pp. 607-620 ◽  
Author(s):  
M. Matsuda ◽  
G. Wakahama

AbstractFor several types of polycrystalline ice of different origins, the spatial lattice orientation of each crystal was determined by measurements of both the a- and c-axis orientations. Analyses of the orientations of adjoining crystals showed that a great majority of adjoining crystals may be in a twinning relation. With special reference to the multi-maximum c-axis preferred-orientation fabric (the so-called “diamond pattern”), which is expected to occupy the largest part of a glacier ice mass, the crystal boundary structure was estimated. The preferred c-axis orientations of this fabric were explained as being the result of coincident oxygen-oxygen lines (hydrogen-bond lines) between adjoining crystals being concentrated in the orientations where seven oxygen-oxygen lines of one single crystal of ice are distributed. From the above result, it was concluded that the multi-maximum fabric is of the polycrystalline structure closest to the structure of a single crystal of ice among all the fabrics found in large ice masses.It is found that the occurrence, in glaciers and ice sheets, of a multi-maximum fabric has a bias to the parts which have undergone a strong shear deformation for a long time. It is thus suggested that plastic deformation of ice with this fabric may be attributed to mechanical twinning due to a strong shear stress.

1978 ◽  
Vol 21 (85) ◽  
pp. 607-620 ◽  
Author(s):  
M. Matsuda ◽  
G. Wakahama

Abstract For several types of polycrystalline ice of different origins, the spatial lattice orientation of each crystal was determined by measurements of both the a- and c-axis orientations. Analyses of the orientations of adjoining crystals showed that a great majority of adjoining crystals may be in a twinning relation. With special reference to the multi-maximum c-axis preferred-orientation fabric (the so-called “diamond pattern”), which is expected to occupy the largest part of a glacier ice mass, the crystal boundary structure was estimated. The preferred c-axis orientations of this fabric were explained as being the result of coincident oxygen-oxygen lines (hydrogen-bond lines) between adjoining crystals being concentrated in the orientations where seven oxygen-oxygen lines of one single crystal of ice are distributed. From the above result, it was concluded that the multi-maximum fabric is of the polycrystalline structure closest to the structure of a single crystal of ice among all the fabrics found in large ice masses. It is found that the occurrence, in glaciers and ice sheets, of a multi-maximum fabric has a bias to the parts which have undergone a strong shear deformation for a long time. It is thus suggested that plastic deformation of ice with this fabric may be attributed to mechanical twinning due to a strong shear stress.


1979 ◽  
Vol 22 (86) ◽  
pp. 165-169 ◽  
Author(s):  
Masuyoshi Matsuda

AbstractTwo new methods have been devised for measurement of crystallographic lattice orientations of individual crystals in polycrystalline ice. The first uses edge-length ratios of etch pits. The second uses a combination of optical measurement on a thin section and etch-pit technique. Although the second method does not work for crystals with theirc-axis oriented parallel to the thin section, it is much simpler and more practical than the first method. When used on polycrystalline glacier ice, this method gave the threea-axes orientations as well asc-axis orientation for each crystal with an accuracy of 5°.


CrystEngComm ◽  
2020 ◽  
Vol 22 (19) ◽  
pp. 3347-3360
Author(s):  
Thai T. H. Nguyen ◽  
Robert B. Hammond ◽  
Ioanna D. Styliari ◽  
Darragh Murnane ◽  
Kevin J. Roberts

A detailed inter-molecular (synthonic) analysis of terbutaline sulfate, an ionic addition salt for inhalation drug formulation, is related to its crystal morphology, the surface chemistry of the habit faces and hence to its crystal surface energy.


2019 ◽  
Vol 117 (1) ◽  
pp. 300-307 ◽  
Author(s):  
E. Sethe Burgie ◽  
Jonathan A. Clinger ◽  
Mitchell D. Miller ◽  
Aaron S. Brewster ◽  
Pierre Aller ◽  
...  

A major barrier to defining the structural intermediates that arise during the reversible photointerconversion of phytochromes between their biologically inactive and active states has been the lack of crystals that faithfully undergo this transition within the crystal lattice. Here, we describe a crystalline form of the cyclic GMP phosphodiesterases/adenylyl cyclase/FhlA (GAF) domain from the cyanobacteriochrome PixJ inThermosynechococcus elongatusassembled with phycocyanobilin that permits reversible photoconversion between the blue light-absorbing Pb and green light-absorbing Pg states, as well as thermal reversion of Pg back to Pb. The X-ray crystallographic structure of Pb matches previous models, including autocatalytic conversion of phycocyanobilin to phycoviolobilin upon binding and its tandem thioether linkage to the GAF domain. Cryocrystallography at 150 K, which compared diffraction data from a single crystal as Pb or after irradiation with blue light, detected photoconversion product(s) based on Fobs− Fobsdifference maps that were consistent with rotation of the bonds connecting pyrrole rings C and D. Further spectroscopic analyses showed that phycoviolobilin is susceptible to X-ray radiation damage, especially as Pg, during single-crystal X-ray diffraction analyses, which could complicate fine mapping of the various intermediate states. Fortunately, we found that PixJ crystals are amenable to serial femtosecond crystallography (SFX) analyses using X-ray free-electron lasers (XFELs). As proof of principle, we solved by room temperature SFX the GAF domain structure of Pb to 1.55-Å resolution, which was strongly congruent with synchrotron-based models. Analysis of these crystals by SFX should now enable structural characterization of the early events that drive phytochrome photoconversion.


2008 ◽  
Vol 23 (12) ◽  
pp. 3387-3395 ◽  
Author(s):  
F. Fang ◽  
W. Yang ◽  
F.C. Zhang ◽  
H. Qing

In situ observation of the electrically induced crack growth and domain-structure evolution is carried out for [100]- and [101]-oriented 72%Pb(Mg1/3Nb2/3)O3–28% PbTiO3 (PMN–PT 72/28) ferroelectric single crystals under static (poling) and alternating electric fields. On the same poling electric field, domains are in the stable engineered domain state where four equivalent polarization variants coexist for [100]-oriented single crystal, while parallel lines representing the 71° domain boundaries appear for [101]-oriented one. Under the same cyclic electric field, the [100]-oriented single crystal shows much higher crack propagation resistance than that of a [101]-oriented crystal. Apart from the material aspects, such as crystallographic fracture anisotropy and non-180° domain boundary structure, crack boundary condition plays an important role in determining the crack propagation behavior.


1997 ◽  
Vol 180 (1) ◽  
pp. 101-104 ◽  
Author(s):  
Bong Mo Park ◽  
Kenji Kitamura ◽  
Kazuya Terabe ◽  
Yasunori Furukawa ◽  
Yangyang Ji ◽  
...  

1995 ◽  
Vol 391 ◽  
Author(s):  
M. Hasunuma ◽  
H. Toyoda ◽  
T. Kawanoue ◽  
S. Ito ◽  
H. Kaneko ◽  
...  

AbstractIn order to clarify the relationship between Al line reliability and film microstructure, especially grain boundary structure and crystal texture, we have tested three kinds of highly textured Al lines, namely, single-crystal Al line, quasi-single-crystal Al line and hypertextured Al line, and two kinds of conventional Al lines deposited on TiN/Ti and on SiO2. Consequently, the empirical relation between the electromigration (EM) lifetime of Al line † and the (111) full width at half maximum (FWHM) value ω is described by † ∝ ω-2 [1]. This improvement of Al line reliability results from as following reasons; firstly, homogeneous microstructure and high activation energy of 1.28eV for the single-crystal Al line (ω=0.18°); secondly, sub-grain boundaries which consisted of dislocation arrays found in the quasi-single-crystal Al line (ω=0.26°) has turned out to be no more effective mass transport paths because dislocation lines are perpendicular to the direction of electron wind. Although there exist plural grain boundary diffusion paths in the newly developed hypertextured Al line (ω=0.5°) formed by using an amorphous Ta-Al underlayer {1], the vacancy flux along the line has been suppressed to the same order of magnitude of single crystal line. It has been clarified that the decrease of FWHM value has promoted the formation of sub-grain boundaries and low-angle boundaries with detailed orientation analysis of individual grains in the hypertextured film. The longer EM lifetime for the hypertextured Al line is considered to be due to the small grain boundary diffusivities for these stable grain boundaries, and this diffusivity reduction resulted in the suppression of void/hillock pair in the Al lines. These results have confirmed that controlling texture and/or grain boundary itself is a promising approach to develop reliable Al lines which withstand higher current densities required in future ULSIs.


1991 ◽  
Vol 77 (12) ◽  
pp. 945-948 ◽  
Author(s):  
M. Slaski ◽  
O. Steinsvoll ◽  
E.J. Samuelsen ◽  
O-M. Nes ◽  
Wu Ting ◽  
...  

1987 ◽  
Vol 33 (115) ◽  
pp. 268-273 ◽  
Author(s):  
Chi-Sing Man ◽  
Quan-Xin Sun

AbstractMcTigue and others (1985) identified a possible problem in the type of constitutive equation usually used for modeling the creep behaviour of polycrystalline ice. They pointed out that Glen’s flow law necessarily excludes the consideration of normal stress effects, which are of great significance in other disciplines that consider non-Newtonian fluids. Using the second-order fluid (with material parameters evaluated from laboratory data) as a tentative model for ice, they reached the conclusion that normal stress effects may be discernible in natural glacier flow. But, as noted by McTigue and others, the second-order fluid “fails to represent the non-linear rate dependence of ice in shear”; therefore it is in fact not a suitable constitutive model for glacier ice in shearing flow. In this note, parallel to what McTigue and others did for the second-order fluid, we present a similar analysis for (I) the modified second-order fluid and (II) the power-law fluid of grade 2, both of which are constitutive models recently proposed by Man as a tentative generalization of Glen’s flow law. Both models (I) and (II) can represent normal stress effects, and both agree with Glen’s flow law in the prediction of the depth profile of velocity in the steady laminar flow of glaciers. For ease of comparison, the same creep data of McTigue and others are used in quantifying the material parameters in these two models. Both models (I) and (II) predict far less pronounced normal stress effects in glaciers than those estimated by McTigue and others (whose data analysis in fact suffered from inconsistencies and over-parameterization).


Sign in / Sign up

Export Citation Format

Share Document