scholarly journals Survey and Mapping of Recent Ice Shelf Changes and Landfast Sea Ice Growth Along the North Coast of Ellesmere Island, NWT, Canada

1986 ◽  
Vol 8 ◽  
pp. 96-99 ◽  
Author(s):  
M.O. Jeffries ◽  
H.V. Serson

Ground and aerial surveys along the north coast of Ellesmere Island confirm that a considerable area of shelf ice remains, although it is not as extensive as it once was due to periodic ice island calvings. However, the lost ice shelf is quickly replaced by landfast sea ice. The sea ice often persists for many years and thickens sufficiently to be considered as the restoration of former ice shelf. The landfast ice quickly assumes an undulating topography, similar to the ice shelves, the development of which is encouraged by melt water and wind action. Even under the present conditions of negative mass balance, the sea ice reaches considerable, undeformed thicknesses. The thick sea ice forming today could be the precursor of an expansion of the ice shelves.

1986 ◽  
Vol 8 ◽  
pp. 96-99 ◽  
Author(s):  
M.O. Jeffries ◽  
H.V. Serson

Ground and aerial surveys along the north coast of Ellesmere Island confirm that a considerable area of shelf ice remains, although it is not as extensive as it once was due to periodic ice island calvings. However, the lost ice shelf is quickly replaced by landfast sea ice. The sea ice often persists for many years and thickens sufficiently to be considered as the restoration of former ice shelf. The landfast ice quickly assumes an undulating topography, similar to the ice shelves, the development of which is encouraged by melt water and wind action. Even under the present conditions of negative mass balance, the sea ice reaches considerable, undeformed thicknesses. The thick sea ice forming today could be the precursor of an expansion of the ice shelves.


Polar Record ◽  
1987 ◽  
Vol 23 (147) ◽  
pp. 631-649 ◽  
Author(s):  
Martin O. Jeffries

AbstractThe north coast of Ellesmere Island is the location of the only known ice shelves in the northern hemisphere. Present Arctic ice shelves are as much as 40–50 m thick and occupy sheltered fiords and embayments. These thick floating ice masses are remnants of the once-extensive Ellesmere Ice Shelf that has disintegrated since 1876–1906, when Aldrich and Peary respectively travelled along the coast. Reasons for the disintegration are not clear, but it has created many ice islands that have been known to circulate in the Arctic Ocean for 35 years or more. Both ice islands and ice shelves are readily distinguished from their surroundings by an undulating surface topography of parallel ridges and troughs up to 300 m apart. The undulations probably owe their origin to the effects of wind and meltwater. Since 1952 these large ice masses have been the subject of considerable research. Ice shelf growth began about 4000 BP, when glaciers flowed off the land and remained afloat in fiords and inlets, and sea ice grew thick and remained fast to the coast. The glacier and sea ice acted as platforms for further thickening both by surface accumulation of snow and ice and by undersurface accretion of fresh, brackish and saline ice. Although much has been learned about the growth, structure and behaviour of arctic ice shelves, questions still remain concerning ice island calving mechanisms, bottom freezing, thick sea ice growth and origins of the ridges and troughs.


Polar Record ◽  
1989 ◽  
Vol 25 (154) ◽  
pp. 207-212 ◽  
Author(s):  
A. K. Higgins

AbstractLarge tabular icebergs derived from the glaciers which drain the north fringe of Greenland's Inland Iceoccur in many North Greenland fjords. Many have undulating surface topography resembling that of the ice islands calved from Ellesmere Island ice shelves. Semi-permanent sea ice in North Greenland fjords often prevents the escape of bergs, except in exceptional summers several decades apart, when the fjord ice melts completely and some bergs may reach the Arctic Ocean. Other possible sources for ice islands are small ice shelves and local glaciers along the north coast of Greenland.


2020 ◽  
Author(s):  
Guillian Van Achter ◽  
Charles Pelletier ◽  
Thierry Fichefet

<p>The Totten ice shelf drains over 570 000 km² of East Antarctica. Most of the ice sheet that drains through the Totten ice-shelf is from Aurora Subglacial Basin and is marine based making the region potentially vulnerable to rapid ice sheet colapse.<br>Understanding how the changes in ocean circulation and properties are causing increased basal melt of Antarctic ice shelves is crucial for predicting future sea level rise.<br>In the context of the The PARAMOUR project (decadal predictability and variability of polar climate: the role of atmosphere-ocean-cryosphere multiscale interaction), we use a high resolution NEMO-LIM 3.6 regional model to investigate the variability and the predictability of the coupled climate system over the Totten area in East Antarctica.<br>In this poster, we will present our on-going work about the impact of landfast ice over the variability of the system. Landfast ice is sea ice that is fastened to the coastline, to the sea floor along shoals or to grouded icebergs. Current sea ice models are unable to represent very crudely the formation, maintenance and decay of coastal landfast ice. We applyed several parameterization for modeling landfast ice over the Totten ice shelf area.</p>


Author(s):  
Xiaoyi Shen ◽  
Chang-Qing Ke ◽  
Bin Cheng ◽  
Wentao Xia ◽  
Mengmeng Li ◽  
...  

AbstractIn August 2018, a remarkable polynya was observed off the north coast of Greenland, a perennial ice zone where thick sea ice cover persists. In order to investigate the formation process of this polynya, satellite observations, a coupled ice-ocean model, ocean profiling data, and atmosphere reanalysis data were applied. We found that the thinnest sea ice cover in August since 1978 (mean value of 1.1 m, compared to the average value of 2.8 m during 1978–2017) and the modest southerly wind caused by a positive North Atlantic Oscillation (mean value of 0.82, compared to the climatological value of −0.02) were responsible for the formation and maintenance of this polynya. The opening mechanism of this polynya differs from the one formed in February 2018 in the same area caused by persistent anomalously high wind. Sea ice drift patterns have become more responsive to the atmospheric forcing due to thinning of sea ice cover in this region.


2013 ◽  
Vol 7 (3) ◽  
pp. 797-816 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


2020 ◽  
Author(s):  
Celia A. Baumhoer ◽  
Andreas J. Dietz ◽  
Christof Kneisel ◽  
Heiko Paeth ◽  
Claudia Kuenzer

Abstract. The safety band of Antarctica consisting of floating glacier tongues and ice shelves buttresses ice discharge of the Antarctic Ice Sheet. Recent disintegration events of ice shelves and glacier retreat indicate a weakening of this important safety band. Predicting calving front retreat is a real challenge due to complex ice dynamics in a data-scarce environment being unique for each ice shelf and glacier. We explore to what extent easy to access remote sensing and modelling data can help to define environmental conditions leading to calving front retreat. For the first time, we present a circum-Antarctic record of glacier and ice shelf front retreat over the last two decades in combination with environmental variables such as air temperature, sea ice days, snowmelt, sea surface temperature and wind direction. We find that the Antarctic ice sheet area shrank 29,618 ± 29 km2 in extent between 1997–2008 and gained an area of 7,108 ± 144.4 km2 between 2009 and 2018. Retreat concentrated along the Antarctic Peninsula and West Antarctica including the biggest ice shelves Ross and Ronne. Glacier and ice shelf retreat comes along with one or several changes in environmental variables. Decreasing sea ice days, intense snow melt, weakening easterlies and relative changes in sea surface temperature were identified as enabling factors for retreat. In contrast, relative increases in air temperature did not correlate with calving front retreat. To better understand drivers of glacier and ice shelf retreat it is of high importance to analyse the magnitude of basal melt through the intrusion of warm Circumpolar Deep Water (CDW) driven by strengthening westerlies and to further assess surface hydrology processes such as meltwater ponding, runoff and lake drainage.


2013 ◽  
Vol 7 (1) ◽  
pp. 373-417 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to on-going atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


2020 ◽  
Vol 61 (82) ◽  
pp. 73-77 ◽  
Author(s):  
Grant J. Macdonald ◽  
Predrag Popović ◽  
David P. Mayer

AbstractPonds that form on sea ice can cause it to thin or break-up, which can promote calving from an adjacent ice shelf. Studies of sea ice ponds have predominantly focused on Arctic ponds formed by in situ melting/ponding. Our study documents another mechanism for the formation of sea ice ponds. Using Landsat 8 and Sentinel-2 images from the 2015–16 to 2018–19 austral summers, we analyze the evolution of sea ice ponds that form adjacent to the McMurdo Ice Shelf, Antarctica. We find that each summer, meltwater flows from the ice shelf onto the sea ice and forms large (up to 9 km2) ponds. These ponds decrease the sea ice's albedo, thinning it. We suggest the added mass of runoff causes the ice to flex, potentially promoting sea-ice instability by the ice-shelf front. As surface melting on ice shelves increases, we suggest that ice-shelf surface hydrology will have a greater effect on sea-ice stability.


1979 ◽  
Vol 24 (90) ◽  
pp. 259-271 ◽  
Author(s):  
G. De Q. Robin

AbstractIce shelves may develop either by continued thickening of sea ice that is held fast to the shore, or by the seaward extension of inland ice. For both processes, as well as for an understanding of ablation and of accumulation at the bottom surface of ice shelves, we need to understand melting and freezing processes in relation to salinity, temperature, and pressure. Consideration of these factors shows that basal melting beneath the thicker parts of ice shelves is much greater than is generally appreciated. This could be sufficient to bring the estimated mass balance of Antarctica into approximate equilibrium. It appears that most Antarctic ice shelves are dependent on the supply of inland ice for their continued existence. However the thick layer of sea ice beneath the Amery Ice Shelf is readily explained in terms of sub-ice water circulation.Transport of heat and mass by water motion beneath ice shelves has the potential to change ice thicknesses by similar amounts to that caused by internal deformation of the ice shelf. Bottom freezing due to thermal conduction throughout the ice shelf is of minor importance.While attention is drawn to the basic equations for flow of ice shelves, it is pointed out that they have yet to be applied satisfactorily to the problem of iceberg calving. This appears from field observations to be due primarily to creep failure of spreading ice shelves, possibly aided by impact from floating icebergs. Recent observations show the effectiveness and likely quantitative importance of this “big bang” theory of iceberg formation in Antarctica.A brief discussion of the effects of climatic change on the disintegration of ice shelves is presented.


Sign in / Sign up

Export Citation Format

Share Document