scholarly journals Encryption and Decryption of Messages in a Selected African Language Using Advanced Encryption Standard (Aes) Algorithm

2018 ◽  
Vol 09 (1-2) ◽  
Author(s):  
Oluwatosin O. Bamigboye ◽  
Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1484 ◽  
Author(s):  
Oluwakemi Christiana Abikoye ◽  
Ahmad Dokoro Haruna ◽  
Abdullahi Abubakar ◽  
Noah Oluwatobi Akande ◽  
Emmanuel Oluwatobi Asani

The wide acceptability of Advanced Encryption Standard (AES) as the most efficient of all of the symmetric cryptographic techniques has further opened it up to more attacks. Efforts that were aimed at securing information while using AES is still being undermined by the activities of attackers This has further necessitated the need for researchers to come up with ways of enhancing the strength of AES. This article presents an enhanced AES algorithm that was achieved by modifying its SubBytes and ShiftRows transformations. The SubBytes transformation is modified to be round key dependent, while the ShiftRows transformation is randomized. The rationale behind the modification is to make the two transformations round key dependent, so that a single bit change in the key will produce a significant change in the cipher text. The conventional and modified AES algorithms are both implemented and evaluated in terms avalanche effect and execution time. The modified AES algorithm achieved an avalanche effect of 57.81% as compared to 50.78 recorded with the conventional AES. However, with 16, 32, 64, and 128 plain text bytes, the modified AES recorded an execution time of 0.18, 0.31, 0.46, and 0.59 ms, respectively. This is slightly higher than the results obtained with the conventional AES. Though a slightly higher execution time in milliseconds was recorded with the modified AES, the improved encryption and decryption strength via the avalanche effects measured is a desirable feat.


Author(s):  
Mahadi Winafil ◽  
Sinar Sinurat ◽  
Taronisokhi Zebua

Digital images that are personal and confidential are very vulnerable to wiretapping by irresponsible parties. Especially if distributed via the internet network such as on Facebook, WhatsApp and e-mail chat based applications. Images that are sent sometimes are often confidential images and must be maintained. In order to maintain the security of digital images can be done by utilizing cryptographic techniques. Cryptographic techniques can secure digital images by changing pixel values from digital images so as to produce different pixel values from the original image to be secured. This research will use AES 128 bit and Triple DES methods for encryption and decryption of digital images on client-server based applications. The results of the encryption AES algorithm will be re-encrypted with the Triple DES Algorithm so as to produce pixel values that are far different from the original pixel values. Keywords: cryptography, image, AES, Triple DES


2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Sugiyanto Sugiyanto ◽  
Rinci Kembang Hapsari

Short Message Service (SMS) is working on a wireless network that allows the theft of the message contents. There are risks that could threaten the security of the contents of the message on SMS services, including SMS snooping, and SMS interception. Therefore, it takes security system messages on SMS services to maintain the security and integrity of the message content to cover the security messages. Algorithms Advanced Encryption Standard (AES) using a structure SPN (Substitution Permutation Network) structure, which has the disadvantage of encryption and decryption, so the safety level is low. To cover the security hole of these weaknesses, the researchers conducted the improvement of Advanced Encryption Standard (AES) algorithm security system based on android SMS using Vigenere algorithm, so that the level of security and integrity of the content of the short message becomes higher and difficult to solve. The results showed an average increase in percentage value of the avalanche effect from 37.24% to 42.96%. Keywords—Advanced Encryption Standard, android, message security, encryption.


Data transmission with protection is main concept which is getting demand now a days for which number of encryption of data techniques are developed and now in this paper Advanced Encryption Standard (AES) Algorithm is used and is implemented on FPGA kit using vertex-3 family. We use 128 bits consists of input, key data, output data for this design. It is called an iterative looping with replacement box, key, loop in this design for both encryption and decryption of data. We use Xilinx software platform for simulation of our design that is AES by which area utilization and throughput is increased for achieving low power consumption, high data security, reduced latency and easy architectural design. This data operation is applicable in many areas.


Author(s):  
Meenakshi R. K ◽  
A. Arivazhagan

<p>The demand of satellite communication, the security algorithms are to be designed in the board. The information from the satellite to the ground is required the data security with the cryptographic algorithms. Advanced encryption standard (AES) is one of the promising cryptographic algorithms for the terrestrial communication. In this paper, the encryption and decryption is mainly focused on the cipher block chaining (CBC) mode for achieving the high secured data transmission. For efficient data transmission, the AES algorithm is implemented by using CBC mode. The proposed work is designed by using RTL modeling and also the minimum numbers of logical elements are used for implementation. </p>


2021 ◽  
Vol 10 (2) ◽  
pp. 21-30
Author(s):  
Ahmida ABIODUN ◽  
Olanrewaju LAWAL ◽  
Oyediran OYEBIYI ◽  
Odiete JOSEPH ◽  
Adeyemi ADETORO

Data security is a key aspect of today’s communication trend and growth. Various mechanisms have been developed to achieve this security. One is cryptography, which represents a most effective method of enhancing security and confidentiality of data. In this work, a hybrid based 136bit key algorithm involving a sequential combination of XOR (Exclusive –Or) encryption and AES (Advanced Encryption Standard) algorithm to enhance the security strength is developed. The hybrid algorithm performance is matched with XOR encryption and AES algorithm using encryption and decryption time, throughput of encryption, space complexity and CPU process time.


2021 ◽  
Vol 1 (02) ◽  
pp. 13
Author(s):  
Bagus Satrio Waluyo Poetro ◽  
Sam Farisa Chaerul Haviana ◽  
Arief Budiman

One way to measure the success of the academic process and achievement of student competence, is giving exams, from the smallest level namely daily tests, semester exams, to the highest level, namely the national exam. In an effort to maintain the security of exam question data, there is a data security method known as cryptography. In this research, a security system was designed that serves to protect exam questions so that data cannot be read by student before its time by using the Advanced Encryption Standard (AES) algorithm.  The AES algorithm is a type of symmetric algorithm where the encryption and decryption processes have the same key for the encryption and decryption processes. In the system that will be designed, the Caesar Cipher algorithm is used to form an additional key (seed) that is kept secret from the public. The results of this study indicate that AES encryption method can give results maximum so that the AES method can applied to virtual data storage system to protect the transmitted data.


Author(s):  
Amir Mahmud Hasibuan

Cryptography is one technique used to improve the security aspects of information. Cryptography is the study of science and art to maintain a message or data information so that the data is safe. Cryptography supports the needs of two aspects of information security, namely secrecy (protection of the confidentiality of information data) and authenticity (protection against counterfeiting and changing unwanted information). Along with the development of computer technology, the world of information technology requires a stronger and safer cryptographic algorithm. Currently the Advanced Encryption Standard (AES) is used as the latest standard cryptographic algorithm. For this reason, it is necessary to prepare an application that can secure a data and maintain its confidentiality so that it is not known by unauthorized parties. One alternative that can be used in making a data security application is by applying the Advanced Encryption Standard (AES) algorithm. hence the design of a data security application on a smartphone by designing the application of encryption and description of text data using the AES method. This method does a round of 10 rounds to get the results of encryption and decryption in the text.


2019 ◽  
Vol 8 (4) ◽  
pp. 11969-11972

now a day’s VLSI is developing technology as predicted by Moors law which is drastically increasing as per demand one of that is data security for efficient processing so, data encryption and decryption are major play in security for this an advanced encryption standard is there which uses reconfigurable hardware process in this paper field programmable gate arrays (FPGAs) kit of Xilinx based platform in which spartan3E EDK kit is used. Here we analyze the speed of AES algorithm by using this EDK environment where obvious high speed is considerable and with power consumption and throughput exemptions. With micro blaze soft core processer we implement our algorithm of AES by using c coding we configure the hardware structure. EDK tool with one round operation is done and both area utilization and throughput are observed as we are familiar that when area reduces power consumption also reduces.


2021 ◽  
Vol 11 (19) ◽  
pp. 9085
Author(s):  
Kyung-Kyu Ko ◽  
Eun-Sung Jung

Many hacking incidents are linked to work files because most companies work with them. However, a variety of file encryption and decryption methods have been proposed. Existing file encryption/decryption technologies are under threat as hacking technologies advance, necessitating the development of stronger encryption algorithms. Therefore, in this study, we propose a modified advanced encryption standard (AES) algorithm and use quantum computing to encrypt/decrypt AES image files. Because the shift is regular during the AES Shift Row procedure, the change technique led the shift to become irregular when using quantum random walk. Computing resources and speeds were simulated using IBM Qiskit quantum simulators for performance evaluation, whereas encryption performance was assessed using number of pixels change rate (NPCR) and unified average changing intensity (UACI).


Sign in / Sign up

Export Citation Format

Share Document