scholarly journals Effectiveness of caporite to reduce concentration of iron and mangan in Ciliwung river water as raw water PDAM

2021 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Nadhila Aulia Dwiputri ◽  
Mia Azizah ◽  
Nurlela Nurlela

The water of the Ciliwung river used as raw water for PDAM Depok contains iron and manganese, which levels were quite high and exceeded the quality standard. The purposes of the research are to determine the effectiveness of caporite to reduce levels of iron and manganese to reach levels that meet the standards of Government Regulation Number 82 of 2001. The sample used in this study was the water of the Ciliwung river used as a source of raw water for PDAM Depok with two different water treatment plant (WTP) locations, location 1 in Legong WTP and location 2 in Citayam WTP. Raw water was taken using a submersible water pump located at the bottom of the Ciliwung river. The analytical method used as a reference for determining iron levels was based on the FerroZine Rapid Liquid Method 1970, and for manganese levels was based on 1- (2-Pyridylazo) -2-Naphthol PAN Method 1977, both methods using the Spectrophotometric method. The results showed that iron and manganese levels were quite high, exceeding the standards of Government Regulation No.82 of 2001 with a maximum standard of iron content is 0.3 mg/L, and a maximum standard of manganese level is 0.1 mg/L. After adding a certain dose of chlorine to Ciliwung river water in the Legong and Citayam WTPs, it was found that chlorine effectively reduced Fe and Mn levels because it was able to reduce levels up to 80% and meet the quality standards.Keywords: Caporite, Iron, Manganese, Ciliwung River, RegulationABSTRAKEfektivitas kaporit untuk menurunkan kadar besi dan mangan dalam air sungai Ciliwung sebagai air baku PDAMAir sungai Ciliwung yang digunakan sebagai air baku PDAM Depok terdapat zat besi dan mangan dengan kadarnya cukup tinggi serta melebihi ambang baku mutu. Tujuan penelitian ini untuk mengetahui efektivitas kaporit dalam menurunkan kadar besi dan mangan sehingga memenuhi standar baku mutu Peraturan Pemerintah Nomor 82 Tahun 2001 untuk kelas 1. Sampel air yang digunakan dalam penelitian ini diambil dari 2 titik lokasi Instalasi Pengolahan Air (IPA) yang berbeda, yaitu  dari IPA Legong dan  IPA Citayam. Sampel air baku diambil dengan menggunakan pompa air submersible (pompa celup) yang berada di dasar sungai Ciliwung. Penelitian dilakukan dengan eksperimen jar test di laboratorium. Metode analisis untuk menentukan kadar besi  mengacu pada FerroZine Rapid Liquid Method tahun 1970 dan mangan berdasarkan 1-(2-Pyridylazo)-2-Napthol PAN Method tahun 1977 dengan menggunakan metode Spektrofotometri. Hasil penelitian menunjukan kadar besi dan mangan yang cukup tinggi hingga melebihi standar yang telah ditetapkan dalam PP No.82 Tahun 2001 dengan kadar Fe maksimal 0,3 mg/L dan kadar Mn maksimal 0,1 mg/L. Setelah dilakukan penambahan bahan kimia kaporit ke dalam sampel air sungai Ciliwung  dari  IPA Legong dan Citayam, dengan dosis 10 mg/L untuk penurunan Fe dan 30 mg/L untuk penurunan Mn dapat efektif menurunkan konsentrasi Fe dan Mn  hingga 80%, dan memenuhi  standar baku mutu yang digunakan.Kata Kunci: Kaporit, Besi, Mangan, Sungai Ciliwung, Baku Mutu

Author(s):  
Dimas Frananta Simatupang ◽  
Gimelliya Saragih ◽  
Martin Siahaan

One of the first steps in processing river water into drinking water is by removing the turbidity of the river water. Turbidity can be removed by adding a chemical called a coagulant. This study aims to obtain data on how the effect of using coagulant dosage variations in reducing turbidity and iron content in raw water at the water treatment plant (IPA) PDAM X. The study was conducted using the jar test method to determine the dose of aluminum sulfate coagulant in reducing turbidity and colorimetric method using visible spectrophotometry to determine iron content that meets quality standard criteria. The results showed that the higher the coagulant dose, the lower the turbidity and iron content of the raw water. Coagulant doses with up to 30 ppm were able to reduce turbidity with an efficiency of 92.67% and reduce iron levels up 96.10%.


2020 ◽  
Author(s):  
Jesse Skwaruk ◽  
Monica Emelko ◽  
Uldis Silins ◽  
Micheal Stone

The ability to treat worst-case scenario, “black water” resulting from wildfire ash transport directly from hillslopes to source waters was investigated—this has not been reported previously. The treatment response capabilities of conventional chemical pre-treatment and high rate clarification processes were evaluated at bench scale; these included: sand-ballasted flocculation (SBF), SBF with enhanced coagulation, and SBF with powdered activated carbon (PAC).<div><br></div><div>Fresh ash was collected from the Thuya Lake Road (TLR) wildfire (+51.4098 latitude, -120.2435 longitude; burn area 556 ha), which was part of the Little Fort Fire Complex that burned in July 2017, near Little Fort, British Columbia, Canada. The ash was used to prepare a severely-deteriorated source water matrix. It was added to high quality river water (Elbow River, Calgary, Alberta) to reflect post-fire water quality conditions when ash is mobilized off the landscape to receiving waters during a major runoff event.</div><div><br></div><div><p>Prior to mixing, ash was sieved through a 1 mm screen to remove any large debris and conifer needles that typically would not be found in water treatment plant influent streams. Three concentrations of ash in river water were prepared (2.0, 10.0, and 20.0 g×L<sup>-1</sup> of ash; five replicates of each) by adding ash to 1000 mL of Elbow River water in 2-L plastic square beakers, and mixed using a jar test apparatus (Phipps & Bird, PB-900 Series Programmable 6-Paddle Jar Tester, Richmond, VA) at 120 RPM for 2 minutes. Turbidity and dissolved organic carbon (DOC) concentrations consistent with or slightly higher than the levels that have been reported following severe wildfire (i.e., >1000 NTU and >15mg×L<sup>-1</sup>, respectively) were targeted. These water matrices were black-colored, in a manner consistent with previous reports of severely-deteriorated water conditions after wildfire.<sup></sup></p><p> </p><p>Standard methods were used to evaluate turbidity (Method 2130B;<sup> </sup>Hach 2100 N turbidimeter, Loveland, CO), pH (4500-H<sup>+</sup>B Electrometric method; <sup> </sup>Orion 720A pH meter, Thermo Fisher Scientific, Waltham, MA), DOC concentration (filtration through pre-rinsed 0.45 µm Nylaflo membranes, Pall, Port Washington, NY; Method 5310C;<sup> </sup>Shimadzu TOC-V WP analyzer, Kyoto, Japan), and UVA<sub>254</sub> (Method 5910B;<sup> </sup>1 cm quartz cell; Hach DR 5000 Spectrophotometer, Loveland, CO). Specific ultraviolet absorbance at 254 nm (SUVA)<sub> </sub>was calculated by dividing UVA<sub>254</sub> absorbance by the DOC concentration.</p></div><div></div>


2018 ◽  
Vol 6 (2) ◽  
pp. 11
Author(s):  
Isna Apriani ◽  
Zairin Zain ◽  
Ria Risti Astanti

Abstract: The settlements in RW 3 and RW 4 of Bakau Besar Laut village, Sungai Pinyuh district, covers an area adjacent to two small industries, namely a shrimp farm and copra processing with no WWTP facility, generating domestic wastes that potentially pollute local settlements and farms. This research has the purpose of identifying the BOD, Grease and Fat contents in the settlement by testing the drainage water quality in the local settlements and farms. Grab Sampling method was used to sample the water, whereas Mann Whitney method served in statistical test. Result of analysis shows that BOD concentration in each drainage has surpassed the quality standard specified in Government Regulation (PP) no. 82 of 2001, but the Oil and Fat concentration did not surpass the same regulation. Based on the results of Mann whitney statistica test, it was found that the BOD, Grease and Fat content has a radius of 700 m > 1700 m (agricultural drainage) with sig value of 0.677 > 0.05; 500 m > 1500 m (inhabitants’ drainage) with sig value of 0.936 > 0.05. Recommendations include clean water treatment (PAM/drinking water company) with intake from Bakau Besar Laut river and garbage sorting based on their characteristics (e.g. organic, anorganic and toxic and hazardous), establishing WWTP (Waste Water Treatment Plant) for shrimp farms and copra processing industries as well as establishing animal waste-based Biogas processing plants as sources for fuel and compost fertilizers that can be reutilized by the people.Abstrak: Permukiman di RW 3 dan RW 4 Desa Bakau Besar Laut,Kec. Sungai Pinyuh, merupakan kawasan yang berdekatan dengan dua industri kecil yaitu tambak udang dan pengolahan kopra yang tidak memiliki [IPAL] dengan limbah domestik yang berpotensi mencemari permukiman dan pertanian di kawasan tersebut.Riset ini bertujuan untuk mengetahui kadar BOD, Minyak dan Lemak di permukiman dengan menguji kualitas air drainase warga dan pertanian. Metode Grab Sampling digunakan untuk pengambilan sampel air dan metode Mann Whitney sebagai pengujian statistik. Hasil analisis menunjukkan bahwa Konsentrasi BOD pada masing – masing drainase telah melewati standar baku mutu PP 82 tahun 2001 sedangkan konsentrasi Minyak dan Lemak tidak melewati standar baku mutu PP 82 tahun 2001. Berdasarkan hasil uji statistik Mann whitney didapatkan kadar BOD, Minyak dan Lemak diantaranya radius 700 m > 1700 m (drainase pertanian) dengan nilai sig 0,677 > 0,05; 500 m > 1500 m (drainase warga) dengan nilai sig 0,936 > 0,05. Rekomendasi berupa pengolahan air bersih (PAM) dengan intake yang berasal dari sungai Bakau Besar Laut, melakukan pemisahan sampah sesuai dengan karakteristik limbahnya yaitu organik, anorganik dan B3, mendirikan IPAL (Instalasi Pengolahan Air Limbah) untuk industri tambak udang dan pengolahan kopra serta mendirikan pengolahan Biogas berbahan baku limbah ternak sebagai sumber bahan bakar dan pupuk kompos organik yang dapat dimanfaatkan kembali oleh masyarakat.


2020 ◽  
Author(s):  
Jesse Skwaruk ◽  
Monica Emelko ◽  
Uldis Silins ◽  
Micheal Stone

The ability to treat worst-case scenario, “black water” resulting from wildfire ash transport directly from hillslopes to source waters was investigated—this has not been reported previously. The treatment response capabilities of conventional chemical pre-treatment and high rate clarification processes were evaluated at bench scale; these included: sand-ballasted flocculation (SBF), SBF with enhanced coagulation, and SBF with powdered activated carbon (PAC).<div><br></div><div>Fresh ash was collected from the Thuya Lake Road (TLR) wildfire (+51.4098 latitude, -120.2435 longitude; burn area 556 ha), which was part of the Little Fort Fire Complex that burned in July 2017, near Little Fort, British Columbia, Canada. The ash was used to prepare a severely-deteriorated source water matrix. It was added to high quality river water (Elbow River, Calgary, Alberta) to reflect post-fire water quality conditions when ash is mobilized off the landscape to receiving waters during a major runoff event.</div><div><br></div><div><p>Prior to mixing, ash was sieved through a 1 mm screen to remove any large debris and conifer needles that typically would not be found in water treatment plant influent streams. Three concentrations of ash in river water were prepared (2.0, 10.0, and 20.0 g×L<sup>-1</sup> of ash; five replicates of each) by adding ash to 1000 mL of Elbow River water in 2-L plastic square beakers, and mixed using a jar test apparatus (Phipps & Bird, PB-900 Series Programmable 6-Paddle Jar Tester, Richmond, VA) at 120 RPM for 2 minutes. Turbidity and dissolved organic carbon (DOC) concentrations consistent with or slightly higher than the levels that have been reported following severe wildfire (i.e., >1000 NTU and >15mg×L<sup>-1</sup>, respectively) were targeted. These water matrices were black-colored, in a manner consistent with previous reports of severely-deteriorated water conditions after wildfire.<sup></sup></p><p> </p><p>Standard methods were used to evaluate turbidity (Method 2130B;<sup> </sup>Hach 2100 N turbidimeter, Loveland, CO), pH (4500-H<sup>+</sup>B Electrometric method; <sup> </sup>Orion 720A pH meter, Thermo Fisher Scientific, Waltham, MA), DOC concentration (filtration through pre-rinsed 0.45 µm Nylaflo membranes, Pall, Port Washington, NY; Method 5310C;<sup> </sup>Shimadzu TOC-V WP analyzer, Kyoto, Japan), and UVA<sub>254</sub> (Method 5910B;<sup> </sup>1 cm quartz cell; Hach DR 5000 Spectrophotometer, Loveland, CO). Specific ultraviolet absorbance at 254 nm (SUVA)<sub> </sub>was calculated by dividing UVA<sub>254</sub> absorbance by the DOC concentration.</p></div><div></div>


2012 ◽  
Vol 12 (1) ◽  
pp. 56-64
Author(s):  
R. J. Swarts ◽  
J. J. Schoeman

The main aim of this study was to determine a treatment strategy for the Berg River water at the Voëlvlei water treatment plant (WTP). Jar tests were conducted using ferric and aluminium sulphate as coagulants to determine the optimum treatment parameters of the Berg River water and the Voëlvlei WTP raw water. The results for the Voëlvlei WTP raw water and the Berg River water with ferric sulphate as the coagulant showed an optimum Fe3+ dosage of 3.0–4.0 mg/L and 4.0–6.0 mg/L, respectively, with an optimum coagulation pH range of 6.6–9.5 and 5.0–10.0, respectively. The results with aluminium sulphate as the coagulant showed an optimum Al3+ dosage of 2.5–3.0 mg/L and 4.0–5.0 mg/L, respectively, with an optimum coagulation pH of 6.0–7.0 and 6.0, respectively. This study concluded that the Berg River water cannot be effectively treated at the Voëlvlei WTP using the plants treatment parameters, even if it is blended with the Voëlvlei WTP raw water. The best treatment strategy for the Berg River water would be pre-treatment using either ferric sulphate or the MIEX® resin on its own, or in conjunction with one another.


2021 ◽  
Vol 3 (2) ◽  
pp. 114-119
Author(s):  
Adina Pacala ◽  
◽  
Maria Laura Samonid ◽  
Bogdan Murariu ◽  

Aluminum salts are widely used across Romania in surface water treatment as coagulants. It is well-known that the efficiency of these coagulants has a complex dependency on the nature of the raw water, being affected by temperature, pH, and suspended solids. The objective of this case study was to compare the coagulation-flocculation efficiency process of raw water from the Bega River, at low temperature and turbidity, taking into account the use of alternative coagulating agents such as alum, poly aluminum chloride (PAC), and their mixing in 1:1 ratio. The raw water samples were treated using the "Jar Test" procedure, comparable with the current plant conditions at Timisoara Waterworks and taking into account possible operational improvements. For the mixture method applied in which was combined alum and PAC in 1:1 mixing ratio were achieved lower concentrations in aluminum residual, TOC, and turbidity.


2018 ◽  
Vol 6 (2) ◽  
Author(s):  
Heru Dwi Wahjono

Kapuas River is the largest river on the Borneo island and become the source of water for the people of this island. In Pontianak City, Kapuas River is become the source of raw water for the local water company (PDAM). To maintain product quality, PDAM Pontianak always monitor this river water quality. During the dry season or during high water, raw water quality Kapuas river becomes salty. Meanwhile, during the rainy season brings torrential river water from upstream mud and water turned into peat. To monitor water quality changes in the Kapuas river in the intake location, PDAM Pontianak has installed an online and real time water quality monitoring system using GSM technology. This paper discusses the installation process online water quality monitoring system starting from the preparation, determination of the location until the process of testing the system. The results of monitoring by the monitoring system is expected to assist the production department to determine the necessary action if there is a change of quality of raw water Kapuas river. Keywords: GSM Communication Based Online Monitoring System, Telemetry System, Intake PDAM Pontianak, Multi Probe Digital Sensor, Water Treatment Plant


1997 ◽  
Vol 36 (4) ◽  
pp. 127-134 ◽  
Author(s):  
J. C. Liu ◽  
M. D. Wu

A fuzzy logic controller (FLC) incorporating the streaming current detector (SDC) was utilized in the automatic control of the coagulation reaction. Kaolinite was used to prepare synthetic raw water, and ferric chloride was used as the coagulant. The control set point was decided at a streaming current (SC) of −0.05 and pH of 8.0 from jar tests, zeta potential and streaming current measurements. A bench-scale water treatment plant with rapid mix, flocculation, and sedimentation units, operated in a continuous-flow mode, was utilized to simulate the reaction. Two critical parameters affecting the coagulation reaction, i.e., pH and streaming current, were chosen as process outputs; while coagulant dose and base dose were chosen as control process inputs. They were on-line monitored and transduced through a FLC. With raw water of initial turbidity of 110 NTU, residual turbidity of lower than 10 NTU before filtration was obtained. Results show that this combination functions satisfactorily for coagulation control.


2008 ◽  
Vol 57 (1) ◽  
pp. 57-64 ◽  
Author(s):  
B. Sani ◽  
E. Basile ◽  
C. Lubello ◽  
L. Rossi

A new Magnetic Ion EXchange resin for DOC (Dissolved Organic Carbon) removal (MIEX®DOC Resin) has been evaluated as water pre-treatment at the Drinking Water Treatment Plant (DWTP) of Florence in order to reduce the oxidant demand and disinfection by-products (DBPs) formation potential. This pre-treatment leads to several effects on downstream treatment processes. In this experimental study the effects of MIEX® pre-treatment on clariflocculation process were evaluated with respect to coagulant demand reduction and characteristics of flocs formed. The analysis was conducted using traditional jar test procedures and a Photometric Dispersion Analyser (PDA2000) which provided continuous information about the aggregation state of particles during the jar tests. For a fixed turbidity goal in clarified water, ion exchange pre-treatment led to coagulant dosage reduction up to 60% and PDA results shown that flocs formed in pre-treated water were bigger and more resistant to shearing effects than those formed by conventional clariflocculation.


Sign in / Sign up

Export Citation Format

Share Document