Registration of Five Spring Wheat Lines Resistant to Russian Wheat Aphid, Stem Rust (Ug99), Leaf Rust, and Stripe Rust

2015 ◽  
Vol 10 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Vicki L. Tolmay ◽  
Scott L. Sydenham ◽  
Willem H.P. Boshoff ◽  
Barend S. Wentzel ◽  
Chrissie W. Miles ◽  
...  
2004 ◽  
Vol 84 (4) ◽  
pp. 1015-1023 ◽  
Author(s):  
H. J. Li ◽  
R. L. Conner ◽  
B. D. McCallum ◽  
X. M. Chen ◽  
H. Su ◽  
...  

The hard red winter wheat Tangmai 4 did not develop symptoms of infection following inoculation with powdery mildew (Erysiphe graminis DC. f. sp. tritici E. Marchal) isolates from regions of western Canada and northern China. Tangmai 4 exhibited resistance to stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. & Henn.) and leaf rust (P. triticina Eriks.) races from western Canada. This wheat line was resistant to individual stripe rust (P. striiformis Westend. f. sp. tritici Eriks.) races from the U.S. and Canada. Sequential C-banding and genomic in situ hybridization (GISH), and electrophoretic analyses of high molecular weight glutenins and gliadins demonstrated that Tangmai 4 carried a pair of T1BL·1RS wheat-rye (Secale cereale L.) translocated chromosomes. Since the genes located on T1BL·1RS are no longer effective in controlling powdery mildew and the rust diseases, Tangmai 4 must carry additional genes for resistance to these diseases, which makes it a valuable resource for the improvement of resistance in wheat against these diseases. Key words: T1BL·1RS translocation, disease resistance, sequential C-banding and GISH, glutenin, gliadin


2010 ◽  
Vol 61 (12) ◽  
pp. 1036 ◽  
Author(s):  
J. Zhang ◽  
C. R. Wellings ◽  
R. A. McIntosh ◽  
R. F. Park

Seedling resistances to stem rust, leaf rust and stripe rust were evaluated in the 37th International Triticale Screening Nursery, distributed by the International Wheat and Maize Improvement Centre (CIMMYT) in 2005. In stem rust tests, 12 and 69 of a total of 81 entries were postulated to carry Sr27 and SrSatu, respectively. When compared with previous studies of CIMMYT triticale nurseries distributed from 1980 to 1986 and 1991 to 1993, the results suggest a lack of expansion in the diversity of stem rust resistance. A total of 62 of 64 entries were resistant to five leaf rust pathotypes. In stripe rust tests, ~93% of the lines were postulated to carry Yr9 alone or in combination with other genes. The absence of Lr26 in these entries indicated that Yr9 and Lr26 are not genetically associated in triticale. A high proportion of nursery entries (63%) were postulated to carry an uncharacterised gene, YrJackie. The 13 lines resistant to stripe rust and the 62 entries resistant to leaf rust represent potentially useful sources of seedling resistance in developing new triticale cultivars. Field rust tests are needed to verify if seedling susceptible entries also carry adult plant resistance.


1985 ◽  
Vol 33 (2) ◽  
pp. 133-153 ◽  
Author(s):  
Jan Valkoun ◽  
Karl Hammer ◽  
Dagmar Kučerová ◽  
Pavel Bartoš

2017 ◽  
Vol 8 ◽  
Author(s):  
Caixia Lan ◽  
Iago L. Hale ◽  
Sybil A. Herrera-Foessel ◽  
Bhoja R. Basnet ◽  
Mandeep S. Randhawa ◽  
...  

Author(s):  

Rust diseases are considered to be responsible for significant qualitative and quantitative damages on wheat. However, the severity of rust diseases can be managed through development of resistant lines. The present study was aimed to scrutinize existing wheat germplasm against leaf rust and stripe rust of wheat. For this purpose 30 wheat genotypes were assessed for disease resistance under artificial inoculation conditions and 16 genotypes were evaluated under natural conditions at Nuclear Institute for Agriculture (NIA), Tandojam, Pakistan. The disease severity ratings were taken according to Cobs’scale. The studies revealed that wheat genotypes were markedly differed in their resistance to leaf and stripe rust. Among the tested wheat lines / varieties, 6 were rated as resistant, 6 moderately resistant, 13 showed MRMS type response, 2 showed moderately susceptible reaction, 3 lines/varieties displayed susceptible response against leaf rust under artificial conditions. Moreover, under natural conditions 1 was rated as resistant, 2 showed MRMS type response against leaf rust and all were found resistant or immune against stripe rusts under both the conditions. Hence, it was suggested that resistant genotypes evaluated from these studies can be deployed in the future breeding strategies to evolve the resistant varieties against leaf & stripe rusts of wheat


2021 ◽  
Vol 12 ◽  
Author(s):  
Meriem Aoun ◽  
Matthew N. Rouse ◽  
James A. Kolmer ◽  
Ajay Kumar ◽  
Elias M. Elias

Leaf rust, caused by Puccinia triticina (Pt), stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), and stem rust caused by Puccinia graminis f. sp. tritici (Pgt) are major diseases to wheat production globally. Host resistance is the most suitable approach to manage these fungal pathogens. We investigated the phenotypic and genotypic structure of resistance to leaf rust, stem rust, and stripe rust pathogen races at the seedling stage in a collection of advanced durum wheat breeding lines and cultivars adapted to Upper Mid-West region of the United States. Phenotypic evaluation showed that the majority of the durum wheat genotypes were susceptible to Pt isolates adapted to durum wheat, whereas all the genotypes were resistant to common wheat type-Pt isolate. The majority of genotypes were resistant to stripe rust and stem rust pathogen races. The durum panel genotyped using Illumina iSelect 90 K wheat SNP assay was used for genome-wide association mapping (GWAS). The GWAS revealed 64 marker-trait associations (MTAs) representing six leaf rust resistance loci located on chromosome arms 2AS, 2AL, 5BS, 6AL, and 6BL. Two of these loci were identified at the positions of Lr52 and Lr64 genes, whereas the remaining loci are most likely novel. A total of 46 MTAs corresponding to four loci located on chromosome arms 1BS, 5BL, and 7BL were associated with stripe rust response. None of these loci correspond to designated stripe rust resistance genes. For stem rust, a total of 260 MTAs, representing 22 loci were identified on chromosome arms 1BL, 2BL, 3AL, 3BL, 4AL, 5AL, 5BL, 6AS, 6AL, 6BL, and 7BL. Four of these loci were located at the positions of known genes/alleles (Sr7b, Sr8155B1, Sr13a, and Sr13b). The discovery of known and novel rust resistance genes and their linked SNPs will help diversify rust resistance in durum wheat.


2020 ◽  
Vol 21 (4) ◽  
pp. 306-311
Author(s):  
Bryn Evin ◽  
Scott Meyer ◽  
Casey Schuh ◽  
Sam Haugen ◽  
Jessica Halvorson ◽  
...  

Stripe rust (Puccinia striiformis f. sp. tritici) and leaf rust (Puccinia triticina) can cause significant yield reductions to hard red spring wheat (HRSW) in North Dakota (ND). The use of host resistance and fungicides can successfully manage this disease. However, the combination of them may not be appropriate every year. From 2016 to 2018, fungicide timing by cultivar experiments were conducted to update recommendations for rust management. Experiments were designed in a randomized complete block with a split-plot arrangement. Main plots included three HRSW cultivars that were moderately resistant, moderately susceptible, and susceptible. Subplots included the fungicide timings of Feekes 9, Feekes 10.5.1, a sequential application, and a nontreated control. Field experiments were categorized into three environments depending on rust onset and disease progress. When rust was detected at early heading, the susceptible cultivar benefited from all fungicide application timings. The detection of rust at tillering leaf stages suggested that fungicide treatments statistically lowered disease and in most cases had statistically higher yield, regardless of host resistance. These results suggest that the benefit from a fungicide application to manage leaf rust and stripe rust is highly influenced by the timing of disease onset and level of host resistance. Results will improve fungicide suggestions for HRSW producers in ND.


Sign in / Sign up

Export Citation Format

Share Document