Sentiment Analysis for Iraqis Dialect in Social Media

2018 ◽  
Vol 1 (2) ◽  
pp. 24-32
Author(s):  
Lamiaa Abd Habeeb

In this paper, we designed a system that extract citizens opinion about Iraqis government and Iraqis politicians through analyze their comments from Facebook (social media network). Since the data is random and contains noise, we cleaned the text and builds a stemmer to stem the words as much as possible, cleaning and stemming reduced the number of vocabulary from 28968 to 17083, these reductions caused reduction in memory size from 382858 bytes to 197102 bytes. Generally, there are two approaches to extract users opinion; namely, lexicon-based approach and machine learning approach. In our work, machine learning approach is applied with three machine learning algorithm which are; Naïve base, K-Nearest neighbor and AdaBoost ensemble machine learning algorithm. For Naïve base, we apply two models; Bernoulli and Multinomial models. We found that, Naïve base with Multinomial models give highest accuracy.

Mekatronika ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 1-12
Author(s):  
Muhammad Nur Aiman Shapiee ◽  
Muhammad Ar Rahim Ibrahim ◽  
Muhammad Amirul Abdullah ◽  
Rabiu Muazu Musa ◽  
Noor Azuan Abu Osman ◽  
...  

The skateboarding scene has arrived at new statures, particularly with its first appearance at the now delayed Tokyo Summer Olympic Games. Hence, attributable to the size of the game in such competitive games, progressed creative appraisal approaches have progressively increased due consideration by pertinent partners, particularly with the enthusiasm of a more goal-based assessment. This study purposes for classifying skateboarding tricks, specifically Frontside 180, Kickflip, Ollie, Nollie Front Shove-it, and Pop Shove-it over the integration of image processing, Trasnfer Learning (TL) to feature extraction enhanced with tradisional Machine Learning (ML) classifier. A male skateboarder performed five tricks every sort of trick consistently and the YI Action camera captured the movement by a range of 1.26 m. Then, the image dataset were features built and extricated by means of  three TL models, and afterward in this manner arranged to utilize by k-Nearest Neighbor (k-NN) classifier. The perception via the initial experiments showed, the MobileNet, NASNetMobile, and NASNetLarge coupled with optimized k-NN classifiers attain a classification accuracy (CA) of 95%, 92% and 90%, respectively on the test dataset. Besides, the result evident from the robustness evaluation showed the MobileNet+k-NN pipeline is more robust as it could provide a decent average CA than other pipelines. It would be demonstrated that the suggested study could characterize the skateboard tricks sufficiently and could, over the long haul, uphold judges decided for giving progressively objective-based decision.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1015 ◽  
Author(s):  
Carles Bretó ◽  
Priscila Espinosa ◽  
Penélope Hernández ◽  
Jose M. Pavía

This paper applies a Machine Learning approach with the aim of providing a single aggregated prediction from a set of individual predictions. Departing from the well-known maximum-entropy inference methodology, a new factor capturing the distance between the true and the estimated aggregated predictions presents a new problem. Algorithms such as ridge, lasso or elastic net help in finding a new methodology to tackle this issue. We carry out a simulation study to evaluate the performance of such a procedure and apply it in order to forecast and measure predictive ability using a dataset of predictions on Spanish gross domestic product.


Author(s):  
B.D. Britt ◽  
T. Glagowski

AbstractThis paper describes current research toward automating the redesign process. In redesign, a working design is altered to meet new problem specifications. This process is complicated by interactions between different parts of the design, and many researchers have addressed these issues. An overview is given of a large design tool under development, the Circuit Designer's Apprentice. This tool integrates various techniques for reengineering existing circuits so that they meet new circuit requirements. The primary focus of the paper is one particular technique being used to reengineer circuits when they cannot be transformed to meet the new problem requirements. In these cases, a design plan is automatically generated for the circuit, and then replayed to solve all or part of the new problem. This technique is based upon the derivational analogy approach to design reuse. Derivational Analogy is a machine learning algorithm in which a design plan is saved at the time of design so that it can be replayed on a new design problem. Because design plans were not saved for the circuits available to the Circuit Designer's Apprentice, an algorithm was developed that automatically reconstructs a design plan for any circuit. This algorithm, Reconstructive Derivational Analogy, is described in detail, including a quantitative analysis of the implementation of this algorithm.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xueyuan Huang ◽  
Yongjun Wang ◽  
Bingyu Chen ◽  
Yuanshuai Huang ◽  
Xinhua Wang ◽  
...  

Background: Predicting the perioperative requirement for red blood cells (RBCs) transfusion in patients with the pelvic fracture may be challenging. In this study, we constructed a perioperative RBCs transfusion predictive model (ternary classifications) based on a machine learning algorithm.Materials and Methods: This study included perioperative adult patients with pelvic trauma hospitalized across six Chinese centers between September 2012 and June 2019. An extreme gradient boosting (XGBoost) algorithm was used to predict the need for perioperative RBCs transfusion, with data being split into training test (80%), which was subjected to 5-fold cross-validation, and test set (20%). The ability of the predictive transfusion model was compared with blood preparation based on surgeons' experience and other predictive models, including random forest, gradient boosting decision tree, K-nearest neighbor, logistic regression, and Gaussian naïve Bayes classifier models. Data of 33 patients from one of the hospitals were prospectively collected for model validation.Results: Among 510 patients, 192 (37.65%) have not received any perioperative RBCs transfusion, 127 (24.90%) received less-transfusion (RBCs < 4U), and 191 (37.45%) received more-transfusion (RBCs ≥ 4U). Machine learning-based transfusion predictive model produced the best performance with the accuracy of 83.34%, and Kappa coefficient of 0.7967 compared with other methods (blood preparation based on surgeons' experience with the accuracy of 65.94%, and Kappa coefficient of 0.5704; the random forest method with an accuracy of 82.35%, and Kappa coefficient of 0.7858; the gradient boosting decision tree with an accuracy of 79.41%, and Kappa coefficient of 0.7742; the K-nearest neighbor with an accuracy of 53.92%, and Kappa coefficient of 0.3341). In the prospective dataset, it also had a food performance with accuracy 81.82%.Conclusion: This multicenter retrospective cohort study described the construction of an accurate model that could predict perioperative RBCs transfusion in patients with pelvic fractures.


Author(s):  
Selvarathi C, Et. al.

Malware is one of the predominant challenges for the Internet users. In recent times, the injection of malwares into machines by anonymous hackers have been increased. This drives us to an urgent need of a system that detects a malware. Our idea is to build a system that learns with the previously collected data related to malwares and detects a malware in the give file, if it is present. We propose a various machine learning algorithm to detect a malware and indicates the user about the danger. In particular we propose to use a algorithm which give a optimal solution to hardware and software oriented malwares.


2021 ◽  
Vol 11 (21) ◽  
pp. 9927
Author(s):  
Qiuying Chen ◽  
SangJoon Lee

Health authorities have recommended the use of digital tools for home workouts to stay active and healthy during the COVID-19 pandemic. In this paper, a machine learning approach is proposed to assess the activity of users on a home workout platform. Keep is a home workout application dedicated to providing one-stop exercise solutions such as fitness teaching, cycling, running, yoga, and fitness diet guidance. We used a data crawler to collect the total training set data of 7734 Keep users and compared four supervised learning algorithms: support vector machine, k-nearest neighbor, random forest, and logistic regression. The receiver operating curve analysis indicated that the overall discrimination verification power of random forest was better than that of the other three models. The random forest model was used to classify 850 test samples, and a correct rate of 88% was obtained. This approach can predict the continuous usage of users after installing the home workout application. We considered 18 variables on Keep that were expected to affect the determination of continuous participation. Keep certification is the most important variable that affected the results of this study. Keep certification refers to someone who has verified their identity information and can, therefore, obtain the Keep certification logo. The results show that the platform still needs to be improved in terms of real identity privacy information and other aspects.


Author(s):  
Erick Omuya ◽  
George Okeyo ◽  
Michael Kimwele

Social media has been embraced by different people as a convenient and official medium of communication. People write messages and attach images and videos on Twitter, Facebook and other social media which they share. Social media therefore generates a lot of data that is rich in sentiments from these updates. Sentiment analysis has been used to determine opinions of clients, for instance, relating to a particular product or company. Knowledge based approach and Machine learning approach are among the strategies that have been used to analyze these sentiments. The performance of sentiment analysis is however distorted by noise, the curse of dimensionality, the data domains and size of data used for training and testing. This research aims at developing a model for sentiment analysis in which dimensionality reduction and the use of different parts of speech improves sentiment analysis performance. It uses natural language processing for filtering, storing and performing sentiment analysis on the data from social media. The model is tested using Naïve Bayes, Support Vector Machines and K-Nearest neighbor machine learning algorithms and its performance compared with that of two other Sentiment Analysis models. Experimental results show that the model improves sentiment analysis performance using machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document