scholarly journals Lipids derived from Camel milk regulate NLRP3 inflammasome-dependent inflammatory responses in human macrophages

2019 ◽  
Vol 9 (4) ◽  
pp. 224 ◽  
Author(s):  
Raya Hamdan Al-Nasseri ◽  
Huda Al-Ruqashi ◽  
Jamal Al-Sabahi ◽  
Ahmed Al-Harrasi ◽  
Ara Kenekanian ◽  
...  

Background: Camel milk is widely used for its reported anti-diabetic and health promoting effects. Lipids derived from the milk have also been shown to exhibit potent anti-inflammatory effects. The mechanism through which these lipids and constituent fatty acids exert these effects remains elusive. The aim of this study was to investigate the effect of camel milk on glycated protein-mediated macrophage inflammation.Methods: To determine the effect of Total Lipids (TL) and Total Fatty Acids (TFA) derived from camel milk on an in vitro model of diabetic inflammation, differentiated THP-1 (dTHP-1) cells stimulated with glycated serum albumin (gBSA) was employed. Cells were pre-treated with TL or TFA before challenging cells with gBSA.Results: Gas Chromatography-Mass Spectrometry (GC-MS) analysis found that TL was 96% triacylglycerol (TAG) while the TFA comprised 65% saturated and 35% unsaturated fatty acids. Both TL and TFA significantly (p<0.05) decreased gBSA-induced secretion of pro-inflammatory cytokines (Tumour necrosis factor-(TNF)-α, Interleukin-(IL)-1β/18). TL also demonstrated the ability to regulate the expression of p50/p65 sub-units of Nuclear Factor-kappa B (NF-κB), while concomitantly increasing the expression of regulatory cytokines IL-10, IL-1 Receptor Antagonist (IL-1Ra) and Cluster of Differentiation 163 (CD163)-shifting cells towards an M2 macrophage phenotype. Additionally, we found that TL significantly regulated the expression of Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing-3 (NLRP3) inflammasome subunit and its regulator; Ten-Eleven Translocation-2 (TET-2).Conclusion: This paper demonstrates the ability of camel milk lipids to regulate gBSA-induced macrophage inflammation in vitro, by modulating the expression of key inflammatory regulators such NF-kB and NLRP3 inflammasome subunit. Keywords: Camel milk lipids, Macrophages, NF-kB, NLRP3-inflammasome, TET-2

1989 ◽  
Vol 120 (2) ◽  
pp. 175-179 ◽  
Author(s):  
C. Street ◽  
R. J. S. Howell ◽  
L. Perry ◽  
S. Al-Othman ◽  
T. Chard

Abstract. The effect of non-esterified fatty acids (NEFA) on the in vitro binding of testosterone, 5-alpha dihydrotestosterone and estradiol E2 to sex hormone binding globulin (SHBG) was examined using pooled normal female serum, and SHBG and albumin fractions obtained from the partial purification of late pregnancy serum. A range of saturated and unsaturated fatty acids were examined for their effect on steroid-protein binding. In normal female serum, NEFA added at physiological concentrations disrupted steroid-protein binding. The shorter chain (C8–C12) saturated acids and the poly-unsaturated acids proved to be more effective inhibitors than the longer chain saturated or mono-unsaturated acids. The greatest inhibition was obtained with E2 whereas the binding of dihydrotestosterone was least affected. With partially purified SHBG, the same concentrations of NEFA were less effective at inhibiting the binding of dihydrotestosterone and testosterone but elicited the same effect with E2. The binding of steroids to albumin appeared to be unaffected by these concentrations of NEFA.


Drug Research ◽  
2017 ◽  
Vol 68 (06) ◽  
pp. 344-348 ◽  
Author(s):  
Abdul Qadir ◽  
Athar Ali ◽  
Muhammad Arif ◽  
Abdulmohsen Al-Rohaimi ◽  
Satya Singh ◽  
...  

AbstractThe seed kernels of Sesamum indicum L. (family: Pedaliaceae) were extracted with ethanol and yield of components determined by Gas Chromatography/Mass Spectrometry (GC/MS). The free radical scavenging activities of ethanolic extract against1, 1-Diphenyl-2-picrylhydrazyl (DPPH) were determined by UV spectrophotometer at 517 nm. Phytochemical screening revealed the presence of numerous bioactive compounds including steroids, phenolic, terpenoids, fatty acids and different types of ester compounds. The ethanolic extract was purified and analyzed by GC MS.The prevailing compounds found in ethanolic extract were Carvacrol (0.04%),Sesamol (0.11%), 4-Allyl-2-methoxy-phenol(0.04%),Palmitic acid (1.08%), cis-9-Hexadecenal (85.40%), Lineoleoyl chloride (0.52%), Palmitic acid β-monoglyceride (0.40%), Dihydro-aplotaxene (0.61%), Oleoyl chloride (1.11%), (+)-Sesamin (4.73%), 1,3-Benzodioxole, 5-[4-(1,3-benzodioxol-5-yloxy)tetrahydro-1 H,3 H-furo [3,4-c]furan-1-yl], [1 S-(1,3,4,6α.), (2.01%)], 6-Nitrocholest-5-en-3-yl acetate (0.22%), Ergost-5-en-3β-ol (2.35%) and 24-Propylidenecholesterol (0.16%). The presence ofsaturated and unsaturated fatty acids in ethanolicextract justifies the use of this plant to treat many ailments in folk and traditional medicine. Ethanolic extract have shown significant antioxidant activity(IC50120.38±2.8 µg/ml). The presence of phenolic (Sesamol), lignin (Sesamin) compounds and unsaturated fatty acids are reported as possible contributor for antioxidantactivity of seed extract.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Zhu ◽  
Zhihong Jian ◽  
Yi Zhong ◽  
Yingze Ye ◽  
Yonggang Zhang ◽  
...  

BackgroundInflammatory responses play a multiphase role in the pathogenesis of cerebral ischemic stroke (IS). Ruxolitinib (Rux), a selective oral JAK 1/2 inhibitor, reduces inflammatory responses via the JAK2/STAT3 pathway. Based on its anti-inflammatory and immunosuppressive effects, we hypothesized that it may have a protective effect against stroke. The aim of this study was to investigate whether inhibition of JAK2 has a neuroprotective effect on ischemic stroke and to explore the potential molecular mechanisms.MethodsRux, MCC950 or vehicle was applied to middle cerebral artery occlusion (MCAO) mice in vivo and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in vitro. After 3 days of reperfusion, neurological deficit scores, infarct volume and brain water content were assessed. Immunofluorescence staining and western blots were used to measure the expression of NLRP3 inflammasome components. The infiltrating cells were investigated by flow cytometry. Proinflammatory cytokines were assessed by RT-qPCR. The expression of the JAK2/STAT3 pathway was measured by western blots. Local STAT3 deficiency in brain tissue was established with a lentiviral vector carrying STAT3 shRNA, and chromatin immunoprecipitation (ChIP) assays were used to investigate the interplay between NLRP3 and STAT3 signaling.ResultsRux treatment improved neurological scores, decreased the infarct size and ameliorated cerebral edema 3 days after stroke. In addition, immunofluorescence staining and western blots showed that Rux application inhibited the expression of proteins related to the NLRP3 inflammasome and phosphorylated STAT3 (P-STAT3) in neurons and microglia/macrophages. Furthermore, Rux administration inhibited the expression of proinflammatory cytokines, including TNF-α, IFN-γ, HMGB1, IL-1β, IL-2, and IL-6, suggesting that Rux may alleviate IS injury by inhibiting proinflammatory reactions via JAK2/STAT3 signaling pathway regulation. Infiltrating macrophages, B, T, cells were also reduced by Rux. Local STAT3 deficiency in brain tissue decreased histone H3 and H4 acetylation on the NLRP3 promoter and NLRP3 inflammasome component expression, indicating that the NLRP3 inflammasome may be directly regulated by STAT3 signaling. Rux application suppressed lipopolysaccharide (LPS)-induced NLRP3 inflammasome secretion and JAK2/STAT3 pathway activation in the OGD/R model in vitro.ConclusionJAK2 inhibition by Rux in MCAO mice decreased STAT3 phosphorylation, thus inhibiting the expression of downstream proinflammatory cytokines and the acetylation of histones H3 and H4 on the NLRP3 promoter, resulting in the downregulation of NLRP3 inflammasome expression.


2020 ◽  
Vol 117 (38) ◽  
pp. 23557-23564
Author(s):  
Alex Ruppe ◽  
Kathryn Mains ◽  
Jerome M. Fox

Cells build fatty acids with biocatalytic assembly lines in which a subset of enzymes often exhibit overlapping activities (e.g., two enzymes catalyze one or more identical reactions). Although the discrete enzymes that make up fatty acid pathways are well characterized, the importance of catalytic overlap between them is poorly understood. We developed a detailed kinetic model of the fatty acid synthase (FAS) ofEscherichia coliand paired that model with a fully reconstituted in vitro system to examine the capabilities afforded by functional redundancy in fatty acid synthesis. The model captures—and helps explain—the effects of experimental perturbations to FAS systems and provides a powerful tool for guiding experimental investigations of fatty acid assembly. Compositional analyses carried out in silico and in vitro indicate that FASs with multiple partially redundant enzymes enable tighter (i.e., more independent and/or broader range) control of distinct biochemical objectives—the total production, unsaturated fraction, and average length of fatty acids—than FASs with only a single multifunctional version of each enzyme (i.e., one enzyme with the catalytic capabilities of two partially redundant enzymes). Maximal production of unsaturated fatty acids, for example, requires a second dehydratase that is not essential for their synthesis. This work provides a kinetic, control-theoretic rationale for the inclusion of partially redundant enzymes in fatty acid pathways and supplies a valuable framework for carrying out detailed studies of FAS kinetics.


PLoS ONE ◽  
2019 ◽  
Vol 14 (7) ◽  
pp. e0219465 ◽  
Author(s):  
Miki Eto ◽  
Tadafumi Hashimoto ◽  
Takao Shimizu ◽  
Takeshi Iwatsubo

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Jing Zhao ◽  
Hong-liang Rui ◽  
Min Yang ◽  
Li-jun Sun ◽  
Hong-rui Dong ◽  
...  

Podocyte injury critically contributes to the pathogenesis of obesity-related glomerulopathy (ORG). Recently, lipid accumulation and inflammatory responses have been found to be involved in podocyte injury. This study is to explore their role and relationship in podocyte injury of ORG. In animal experiments, the ORG mice developed proteinuria, podocyte injury, and hypertriglyceridemia, accompanied with deregulated lipid metabolism, renal ectopic lipid deposition, activation of NOD-like receptor protein 3 (NLRP3) inflammasome, and secretion of IL-1β of the kidney. The expression of adipose differentiation-related protein (ADRP), CD36, sterol regulatory element-binding protein 1 (SREBP-1), and peroxisome proliferator-activated receptor α (PPARα) in renal tissue were increased. In in vitro cell experiments, after cultured podocytes were stimulated with leptin, similar to ORG mice, we found aggravated podocyte injury, formatted lipid droplet, increased expression of ADRP and CD36, activated NLRP3 inflammasome, and released IL-1β. In addition, after blocking CD36 with inhibitor sulfo-N-succinimidyl oleate (SSO) or CD36 siRNA, activation of NLRP3 inflammasome and release of IL-1β are downregulated, and podocyte injury was alleviated. However, after blocking NLRP3 with MCC950, although podocyte injury was alleviated and release of IL-1β was decreased, there was no change in the expression of CD36, ADRP, and intracellular lipid droplets. Taken together, our study suggests that CD36-mediated lipid accumulation and activation of NLRP3 inflammasome may be one of the potential pathogeneses of ORG podocyte injury.


Sign in / Sign up

Export Citation Format

Share Document