scholarly journals Effects of Halogenated Compounds, Organic Acids and Unsaturated Fatty Acids on In vitro Methane Production and Fermentation Characteristics

2004 ◽  
Vol 17 (9) ◽  
pp. 1255-1259 ◽  
Author(s):  
N. J. Choi ◽  
S. Y. Lee ◽  
H. G. Sung ◽  
S. C. Lee ◽  
J. K. Ha
Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2648
Author(s):  
Eslam Ahmed ◽  
Naoki Fukuma ◽  
Masaaki Hanada ◽  
Takehiro Nishida

This study is the first to evaluate the chemical composition and impacts of four different edible insects, Acheta domesticus (A.d), Brachytrupes portentosus (B.p), Gryllus bimaculatus (G.b), and Bombyx mori (B.m), on the digestibility, rumen fermentation, and methane production when used as a substitute for 25% of the soybean meal (SBM) in a ruminant diet through in vitro incubation. The dietary treatments were 100% grass hay, 60% grass hay + 40% SBM, 60% grass hay + 30% SBM + 10% A.d, 60% grass hay + 30% SBM + 10% B.p, 60% grass hay + 30% SBM + 10% G.b, and 60% grass hay + 30% SBM + 10% B.m. The experiment was conducted as a short-term batch culture for 24 h at 39 °C, and the incubation was repeated in 3 consecutive runs. Chemical analysis of the insects showed that they were rich in fat (14–26%) with a high proportion of unsaturated fatty acids (60–70%). Additionally, the insects were rich in protein (48–61%) containing all essential amino acids and the amino acid profiles of the insects were almost the same as that of SBM. The inclusion of insects did not affect nutrient digestibility or the production of volatile fatty acids but did increase the production of ammonia-nitrogen. The addition of G.b and B.m led to decrease in methane production by up to 18% and 16%, respectively. These results reveal that substitution of 25% SBM in the diet with the tested insects had no negative impacts, and their potential to reduce methane production is an environmental benefit.


2021 ◽  
Author(s):  
Yulianri Rizki Yanza ◽  
Malgorzata Szumacher-Strabel ◽  
Dorota Lechniak ◽  
Sylwester Ślusarczyk ◽  
Pawel Kolodziejski ◽  
...  

Abstract Background: This study aimed to investigate the effect of biologically active compounds (BAC) of Coleus amboinicus Lour. (CAL) herb fed to growing lambs on ruminal methane production, ruminal biohydrogenation of unsaturated fatty acids and meat characteristics. An in vitro trial (Experiment 1) comprising of control and three experimental diets (CAL constituting 10%, 15%, and 20% of the total diet) was conducted to determine an effective dose for in vivo experiments. After the in vitro trial, two in vivo experiments were conducted on six growing, rumen-cannulated lambs (Experiment 2) and 16 growing lambs (Experiment 3), which were assigned into the control (CON) and one experimental diet (20% of CAL). Several parameters were examined in vitro (pH, ammonia and VFA concentrations, protozoa, methanogens and select bacteria populations) and in vivo (methane production, digestibility, ruminal microorganism populations, meat quality, fatty acids profiles in rumen fluid and meat, transcript expression of 5 genes in meat). Results: The CAL lowered in vitro methane production by 51%. In the in vivo experiments, lambs fed CAL decreased methane production by 20% compared with the CON animals (Experiment 3), which corresponded to the reduced total methanogens counts in all experiments up to 28%, notably Methanobacteriales. In Experiment 3, CAL increased or tended to increase the numbers of Ruminococcus albus, Megasphaeraelsdenii, Butyrivibrioproteoclasticus, and Butyrivibriofibrisolvens. Dietary CAL suppressed the Holotricha population, but increased or tended to increase Entodiniomorpha population in Experiments 2 and 3. An increase in the polyunsaturated fatty acid (PUFA) proportion in the rumen of lambs was noted in response to the CAL diet, which was mainly attributable to the increase in C18:3 cis-9 cis-12 cis-15 (LNA) proportion. The CAL reduced the mRNA expressions of four investigated genes in meat (fatty acid synthase, stearoyl-CoA desaturase, lipoprotein lipase, and fatty acid desaturase 1). Conclusions:Summarizing, polyphenols of CAL (20% in diet) origin can mitigate ruminal methane production by inhibiting the methanogens communities. Supplementation of CAL also provides favorable conditions in the rumen by modulating ruminal bacteria involved in fermentation and biohydrogenation of fatty acids. CAL elevated the LNA concentration, which led to improved meat quality through increased deposition of n-3 PUFA.


2016 ◽  
Vol 56 (3) ◽  
pp. 627 ◽  
Author(s):  
Mengzhi Wang ◽  
Yujia Jing ◽  
Shimin Liu ◽  
Jian Gao ◽  
Liangfeng Shi ◽  
...  

This experiment examined which type of oils was a superior suppressor to methane mitigation in ruminants. Four oils, peanut, rapeseed, corn and soybean oils, varying in the contents of unsaturated fatty acids as indicated by their iodine values, were used to investigate their effects on methane production and on the content of the F420 enzyme of ruminal methanogens in an in vitro fermentation. The control group was added with calcium palmitate (100% saturated 16C fatty acid). The results showed that the total gas production over a period of 36 h varied from 20.61 mL to 39.67 mL, and were lower in rapeseed, corn and soybean oil treatments than the control (P < 0.05), but not in the peanut oil treatment. The methane concentration in the total gas differed significantly among groups (P < 0.05), and decreased with the increases of unsaturation degree of the oils. The coenzyme F420 content, as indicated by F420 fluorescence intensity in supernatant of the medium, was significantly lower in the oil treatments than in the control (P < 0.05), and the intensity values decreased with the increases of unsaturation degree of the oils, except for the rapeseed oil treatment. Furthermore, there was a close correlation between F420 content and methane production (r = 0.916). By comparison, soybean oil treatment had higher dehydrogenase activity and bacteria density than the other groups (P < 0.05); but was lower in methanogens and genus entodinium (P < 0.05), except for the rapeseed oil treatment. Overall, soybean oil contained a high level of unsaturated fatty acids, and could be used as an ingredient of ruminant diets for methane suppression.


1989 ◽  
Vol 120 (2) ◽  
pp. 175-179 ◽  
Author(s):  
C. Street ◽  
R. J. S. Howell ◽  
L. Perry ◽  
S. Al-Othman ◽  
T. Chard

Abstract. The effect of non-esterified fatty acids (NEFA) on the in vitro binding of testosterone, 5-alpha dihydrotestosterone and estradiol E2 to sex hormone binding globulin (SHBG) was examined using pooled normal female serum, and SHBG and albumin fractions obtained from the partial purification of late pregnancy serum. A range of saturated and unsaturated fatty acids were examined for their effect on steroid-protein binding. In normal female serum, NEFA added at physiological concentrations disrupted steroid-protein binding. The shorter chain (C8–C12) saturated acids and the poly-unsaturated acids proved to be more effective inhibitors than the longer chain saturated or mono-unsaturated acids. The greatest inhibition was obtained with E2 whereas the binding of dihydrotestosterone was least affected. With partially purified SHBG, the same concentrations of NEFA were less effective at inhibiting the binding of dihydrotestosterone and testosterone but elicited the same effect with E2. The binding of steroids to albumin appeared to be unaffected by these concentrations of NEFA.


2020 ◽  
Vol 117 (38) ◽  
pp. 23557-23564
Author(s):  
Alex Ruppe ◽  
Kathryn Mains ◽  
Jerome M. Fox

Cells build fatty acids with biocatalytic assembly lines in which a subset of enzymes often exhibit overlapping activities (e.g., two enzymes catalyze one or more identical reactions). Although the discrete enzymes that make up fatty acid pathways are well characterized, the importance of catalytic overlap between them is poorly understood. We developed a detailed kinetic model of the fatty acid synthase (FAS) ofEscherichia coliand paired that model with a fully reconstituted in vitro system to examine the capabilities afforded by functional redundancy in fatty acid synthesis. The model captures—and helps explain—the effects of experimental perturbations to FAS systems and provides a powerful tool for guiding experimental investigations of fatty acid assembly. Compositional analyses carried out in silico and in vitro indicate that FASs with multiple partially redundant enzymes enable tighter (i.e., more independent and/or broader range) control of distinct biochemical objectives—the total production, unsaturated fraction, and average length of fatty acids—than FASs with only a single multifunctional version of each enzyme (i.e., one enzyme with the catalytic capabilities of two partially redundant enzymes). Maximal production of unsaturated fatty acids, for example, requires a second dehydratase that is not essential for their synthesis. This work provides a kinetic, control-theoretic rationale for the inclusion of partially redundant enzymes in fatty acid pathways and supplies a valuable framework for carrying out detailed studies of FAS kinetics.


PLoS ONE ◽  
2019 ◽  
Vol 14 (7) ◽  
pp. e0219465 ◽  
Author(s):  
Miki Eto ◽  
Tadafumi Hashimoto ◽  
Takao Shimizu ◽  
Takeshi Iwatsubo

Sign in / Sign up

Export Citation Format

Share Document