THE CONSOLIDATION OF SOFT CLAY FOUNDATION GROUND USING GEOSYNTHETICS COMBINED WITH THE ELECTRO-OSMOSIS PROCESS

Author(s):  
Florin Sebastian Mustăţea ◽  
Raluca Ioana Nicolae

In the last decade, the construction of communication routes has intensified in Romania. As a result, many case studies related to the presence of saturated clayey soils in the foundation ground have emerged. In order to speed up the execution of highways and railways in a safely manner, the designers use different methods of improving soft clays in terms of compressibility. The present study aims to evaluate the efficiency of an electrical current used for the vertical dewatering of a soft clay subgrade, through simple physical models. The experimental study is being performed on a laboratory scale model by using electrodes and geosynthetics for drainage, along with the vacuum technique. The vertical drainage capacity during the electro-osmotic dewatering process, combined with preloading, drainage, vacuum and heat induction is being evaluated. The integrated effect of these methods on the consolidation process will be analyzed for the final conclusions.

1987 ◽  
Vol 24 (4) ◽  
pp. 611-622 ◽  
Author(s):  
J. P. Love ◽  
H. J. Burd ◽  
G. W. E. Milligan ◽  
G. T. Houlsby

The effectiveness of geogrid reinforcement, placed at the base of a layer of granular fill on the surface of soft clay, has been studied by small-scale model tests in the laboratory. In the tests, monotonic loading was applied by a rigid footing, under plane strain conditions, to the surface of reinforced and unreinforced systems, using a range of fill thicknesses and subgrade strengths. Continuous measurements were made of footing load and footing displacement, and deformations of the subgrade and of the geogrid reinforcement were measured from photographs. From these measurements the different mechanisms of failure in the unreinforced and reinforced system were established. Performance of reinforced systems was found to be superior even at small deformations, owing to the significant change in the pattern of shear forces acting on the surface of the clay, brought about by the presence of the reinforcement. Membrane action of the reinforcement only became significant at large deformations.A finite element computer program has been specially formulated to allow inclusion of a thin reinforcing layer, and to handle correctly the large deformations and strains induced in the physical models. This formulation is able to reproduce satisfactorily the main features of behaviour observed in the models, and may now be used with some confidence to perform accurate predictions for full-scale structures. Key words: bearing capacity, clays, finite elements, foundations, geotextile, granular materials, model tests, reinforced soil, roads.


2011 ◽  
Vol 48 (12) ◽  
pp. 1788-1802 ◽  
Author(s):  
V. Jeyakanthan ◽  
C.T. Gnanendran ◽  
S.-C.R. Lo

The application of electro-osmosis (EO) for stabilizing soft clays is receiving more attention in geotechnical engineering. When the application of traditional ground improvement techniques, such as surcharge, pre-loading, wick drains, and vacuum pre-loading, is not appropriate for a particular situation, innovative techniques such as electro-osmosis need to be considered. Although the effectiveness of electro-osmosis has been widely demonstrated in many field applications, geotechnical engineers are still hesitant to apply electro-osmosis due to unknown effects such as electro-chemical changes, which could not be accounted for in the design. This paper presents a design of an electro-osmotic triaxial testing apparatus suitable for electro-osmotic treatment of soft clays and for measuring electro-osmotic permeability and generated pore-water pressure, as well as a testing procedure that accounts for the contribution of electro-chemical changes in the improvement of soil properties. A series of electro-osmotic triaxial tests with various initial stresses and boundary conditions were conducted and the results are presented in the paper.


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Raluca Ioana Nicolae ◽  
Sebastian Florin Mustăţea

In the last decade, the construction of communication routes has intensified globally. As a result, many case studies have emerged related to the presence of saturated clayey soils in the foundation ground. In order to speed up the execution of highways and railways in a safely manner, the designers use different methods for improving soft clays in terms of compressibility.The present paper aims to evaluate the efficiency of an electrochemical method used for the dewatering of a soft montmorillonite clay subgrade. The effects on the consolidation process are analyzed for the final conclusions. The advantages of the method are briefly discussed, and some potential areas for scientific research are proposed.


2014 ◽  
Vol 513-517 ◽  
pp. 269-272
Author(s):  
Yeong Mog Park ◽  
Ik Joo Um ◽  
Norihiko Miura ◽  
Seung Cheol Baek

The purpose of this study is to investigate the undrain shear strength increment during consolidation process of soft clayey soils. Thirty kinds of laboratory triaxial tests have been performed using undisturbed and remolded Ariake clay samples with different degree of consolidation and 5 kinds of confining pressure. Test results show that well known linear equation proposed by Yamanouchi et al.(1982) is overestimated the strength of undisturbed soft clay ground in the process of consolidation. A new simple and reasonable exponential equation proposed in this paper.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-6
Author(s):  
Francisco Lopes ◽  
Osvangivaldo Oliveira ◽  
Marcio Almeida

The log of a SPT in very soft clay may simply indicate a zero blow-count, or present information on the penetration – under self-weight – of the composition (sampler, rods and hammer) as recommended by some standards. The second type of information is often disregarded by design engineers due to the lack of a standard procedure for measuring these penetrations or because the test is regarded as not sensitive enough to give an indication on the undrained shear strength of soft clays. The penetration under the composition’s selfweight, however, can indicate the magnitude of Su, which, along with other more specific and sensitive tests, can help in assessing the spatial distribution of clay consistency in a large deposit. A proposed test procedure and interpretation had been given in an earlier technical note. This note presents an extended formulation and an evaluation of Su via the SPT at a construction site in Rio de Janeiro, including comparisons with results of piezocone and vane tests. The values of Su obtained with the SPT lie between the profiles given by vane tests, corrected by Plasticity Index, and the Critical State Theory, the latter representing a lower bound to the clay strength.


1980 ◽  
Vol 17 (2) ◽  
pp. 203-224 ◽  
Author(s):  
R. Blanchet ◽  
F. Tavenas ◽  
R. Garneau

During the construction of heavy structures, such as bridges and overpasses, on soft clays on the north shore of the St. Lawrence Valley, a detailed load test program on friction piles was performed to establish the characteristics of the most suitable type of pile and to study its long-term behaviour. Three types of piles, timber, steel pipe with closed end, and precast concrete Herkules H-420 piles, were tested. Four timber piles driven in a group and submitted to a 712 kN load served to study the long-term settlement of a small group of piles. Three deep settlement gauges were installed in the centre of this group for measuring settlements in clay at various depths.This test program was completed by the instrumentation of two bridge piers in order to verify the behaviour of larger groups of piles.The paper presents the results of the test piles, the long-term behaviour (4 years) of the bridge pier foundations resting on friction piles in soft clay, and the interpretation of the results.This study shows that the pore pressures induced by pile driving are related to the pre-consolidation of the clay and that they are much larger for tapered piles. It is demonstrated that the effective stress analysis method proposed in 1976 by Meyerhof determines adequately the ultimate pile bearing capacity, but that the effect of the timber pile taper doubles the skin friction.The settlement analysis of pile groups shows that settlements are due to the reconsolidation of the clay and shear creep deformations in the clay close to the pile wall.


1971 ◽  
Vol 46 ◽  
pp. 119-124
Author(s):  
P. E. Boynton ◽  
E. J. Groth ◽  
R. B. Partridge ◽  
David T. Wilkinson

Timing the arrival of optical pulses from NP 0532 is a potentially important tool for studying the physics of this fascinating object. However, there are some difficulties in interpreting the data in terms of physical models. Some progress has been made on understanding the largest effect – the pulsar braking mechanism. The glitch of late September, 1969 can be interpreted as the speed-up, and subsequent relaxation, of the rotation of a neutron star crust. An alternate explanation is that of a planet in an eccentric orbit. Both models fit the rather meager data near the event. A small sinusoidal effect is indicated in a relatively quiet period of the data.


2015 ◽  
Vol 773-774 ◽  
pp. 1502-1507
Author(s):  
Saiful Azhar Ahmad Tajudin ◽  
Mohd Fairus Yusof ◽  
I. Bakar ◽  
Aminaton Marto ◽  
Muhammad Nizam Zakaria ◽  
...  

Construction, buildings and infrastructure founded on soft clays are often affected by settlement problem. Therefore, Prefabricated Vertical Drain (PVD) is one of the best solutions to accelerate soil consolidation by shortening the drainage path. In this study, numerical investigation was carried out to pursue a better understanding of the consolidation behavior of soft clay improved with PVD. The consolidation process accelerated by PVD with surcharge of 50 kPa was analysed using the ABAQUS software by adopting an elastic model. The aim of this study is to compare the settlement and the required time to fully consolidate the soft soil at different drain spacings (1.0 m, 1.5 m and 2.0 m) for two different thickness of the clay layer. The results shows that the time required to completely consolidate the soft soil for 12 m and 20 m thickness of clay layer with different spacings are in the range of 3 months to 66 months. The settlement rate and excess pore water pressure dissipation are increased when the spacing of the drain closer.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3073 ◽  
Author(s):  
Xing ◽  
Chen ◽  
Yuan ◽  
Shi

Building deformation models consistent with reality is a crucial step for time-series deformation monitoring. Most deformation models are empirical mathematical models, lacking consideration of the physical mechanisms of observed objects. In this study, we propose an improved time-series deformation model considering rheological parameters (viscosity and elasticity) based on the Kelvin model. The functional relationships between the rheological parameters and deformation along the Synthetic Aperture Radar ( SAR) line of sight are constructed, and a method for rheological parameter estimation is provided. To assess the feasibility and accuracy of the presented model, both simulated and real deformation data over a stretch of the Lungui highway (built on soft clay subgrade in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. With the proposed deformation model, the unknown rheological parameters over all the high coherence points are obtained and the deformation time-series are generated. The high-pass (HP) deformation component and external leveling ground measurements are utilized to assess the modeling accuracy. The results show that the root mean square of the residual deformation is ±1.6 mm, whereas that of the ground leveling measurements is ±5.0 mm, indicating an improvement in the proposed model by 53%, and 34% compared to the pure linear velocity model. The results indicate the reliability of the presented model for the application of deformation monitoring of soft clay highways. The estimated rheological parameters can be provided as a reference index for the interpretation of long-term highway deformation and the stability control of subgrade construction engineering.


Sign in / Sign up

Export Citation Format

Share Document