scholarly journals IDENTIFICATION OF WHEAT GERMPLASM RESISTANT TO LEAF, STRIPE AND STEM RUST USING MOLECULAR MARKERS

2020 ◽  
Vol 384 (2) ◽  
pp. 45-52
Author(s):  
A. M. Kokhmetova ◽  
M. N. Atishova ◽  
K. Galymbek

Wheat leaf rust, stripe and stem rust are major wheat diseases in Kazakhstan that reduce yield and quality and cause considerable economic damage. This study utilized winter wheat germplasm from different national and international nurseries to evaluate their value for genetic and breeding programs directed towards improvement of wheat rust resistance in Kazakhstan. Based on the data from field experiments, the most valuable sources, combined resistance to both leaf and stripe rust were 16 lines and cultivars (28.6%), including mainly entries from CIMMYT and IWWIP. Nineteen entries (30.6%) had high level of resistance to leaf rust in the field tests. Thirty-three entries (53%) were effective to control stripe rust. In our study 22% wheat accessions studied had polymorphic band linked to leaf rust resistance gene Lr10. Based on rust reactions and data of molecular analysis, 3% entries were found to have Lr19/Sr25, 11% entries – Lr26/Sr31/Yr9/Pm8, 43% entries – Lr34/Yr18, 12% entries – Lr37/Yr17/Sr38, 17% – Lr68 gene and 6% entries – Yr10 gene. Only one line from IWWIP nursery showed presence of Yr15 gene. Out of 38 studied entries, the fragment of DNA associated with Sr22 gene in 13 wheat entries observed. Gene Sr22 was identified in five Kazakhstani and in 8 Belarusian wheat entries. The results obtained used for developing wheat cultivars resistant to rust.

2001 ◽  
Vol 52 (10) ◽  
pp. 1011 ◽  
Author(s):  
K. N. Adhikari ◽  
R. A. McIntosh

Studies were undertaken to identify the genes conferring stem rust and leaf rust resistances in Amagalon and to determine the usefulness of this line as a source of rust resistance in oat breeding programs. Amagalon was crossed with certain rust-resistant and rust-susceptible lines and segregating populations were tested with pathotypes of Puccinia graminis avenae and P. coronata avenae. Tests with the widely virulent P. graminis avenae pt 94+Pg-13 indicated that resistance in Amagalon was governed by the complementary recessive gene complex known as Pg-a. This hypothesis was further substantiated by temperature sensitivity tests and by a test of induced susceptibility to stem rust, known to be unique to lines possessing Pg-a. However, Amagalon yielded a unique source of resistance to leaf rust that was effective against current pathotypes of P. coronata avenae in Australia. This gene, assumed to be Pc91, was inherited independently of a second leaf rust resistance gene present in cv. Culgoa. It was concluded that Amagalon is a useful source of resistance to leaf rust that should be used in combination with other genes for resistance to prolong its effectiveness.


2010 ◽  
Vol 61 (12) ◽  
pp. 1036 ◽  
Author(s):  
J. Zhang ◽  
C. R. Wellings ◽  
R. A. McIntosh ◽  
R. F. Park

Seedling resistances to stem rust, leaf rust and stripe rust were evaluated in the 37th International Triticale Screening Nursery, distributed by the International Wheat and Maize Improvement Centre (CIMMYT) in 2005. In stem rust tests, 12 and 69 of a total of 81 entries were postulated to carry Sr27 and SrSatu, respectively. When compared with previous studies of CIMMYT triticale nurseries distributed from 1980 to 1986 and 1991 to 1993, the results suggest a lack of expansion in the diversity of stem rust resistance. A total of 62 of 64 entries were resistant to five leaf rust pathotypes. In stripe rust tests, ~93% of the lines were postulated to carry Yr9 alone or in combination with other genes. The absence of Lr26 in these entries indicated that Yr9 and Lr26 are not genetically associated in triticale. A high proportion of nursery entries (63%) were postulated to carry an uncharacterised gene, YrJackie. The 13 lines resistant to stripe rust and the 62 entries resistant to leaf rust represent potentially useful sources of seedling resistance in developing new triticale cultivars. Field rust tests are needed to verify if seedling susceptible entries also carry adult plant resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Meriem Aoun ◽  
Matthew N. Rouse ◽  
James A. Kolmer ◽  
Ajay Kumar ◽  
Elias M. Elias

Leaf rust, caused by Puccinia triticina (Pt), stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), and stem rust caused by Puccinia graminis f. sp. tritici (Pgt) are major diseases to wheat production globally. Host resistance is the most suitable approach to manage these fungal pathogens. We investigated the phenotypic and genotypic structure of resistance to leaf rust, stem rust, and stripe rust pathogen races at the seedling stage in a collection of advanced durum wheat breeding lines and cultivars adapted to Upper Mid-West region of the United States. Phenotypic evaluation showed that the majority of the durum wheat genotypes were susceptible to Pt isolates adapted to durum wheat, whereas all the genotypes were resistant to common wheat type-Pt isolate. The majority of genotypes were resistant to stripe rust and stem rust pathogen races. The durum panel genotyped using Illumina iSelect 90 K wheat SNP assay was used for genome-wide association mapping (GWAS). The GWAS revealed 64 marker-trait associations (MTAs) representing six leaf rust resistance loci located on chromosome arms 2AS, 2AL, 5BS, 6AL, and 6BL. Two of these loci were identified at the positions of Lr52 and Lr64 genes, whereas the remaining loci are most likely novel. A total of 46 MTAs corresponding to four loci located on chromosome arms 1BS, 5BL, and 7BL were associated with stripe rust response. None of these loci correspond to designated stripe rust resistance genes. For stem rust, a total of 260 MTAs, representing 22 loci were identified on chromosome arms 1BL, 2BL, 3AL, 3BL, 4AL, 5AL, 5BL, 6AS, 6AL, 6BL, and 7BL. Four of these loci were located at the positions of known genes/alleles (Sr7b, Sr8155B1, Sr13a, and Sr13b). The discovery of known and novel rust resistance genes and their linked SNPs will help diversify rust resistance in durum wheat.


2007 ◽  
Vol 58 (6) ◽  
pp. 532 ◽  
Author(s):  
Brian J. Steffenson ◽  
Pablo Olivera ◽  
Joy K. Roy ◽  
Yue Jin ◽  
Kevin P. Smith ◽  
...  

Leaf rust, stem rust, and stripe rust are among the most important diseases of wheat and barley worldwide and are best controlled using genetic resistance. To increase the diversity of rust resistance in wheat and barley, a project was initiated to identify and characterise rust resistance genes from the wild species of Aegilops sharonensis (Sharon goatgrass) and Hordeum vulgare ssp. spontaneum (wild barley), respectively. One hundred and two accessions of Sharon goatgrass from Israel and 318 Wild Barley Diversity Collection (WBDC) accessions from the Fertile Crescent, Central Asia, North Africa, and the Caucasus region were evaluated for resistance to leaf rust, stem rust, and/or stripe rust. Sharon goatgrass exhibited a wide range of infection types (ITs) in response to leaf rust, stem rust, and stripe rust. The percentage of resistant accessions in Sharon goatgrass was 58.8–78.4% for leaf rust, 11.8–69.6% for stem rust, and 46.1% for stripe rust, depending on the race used and the plant growth stage. Genetic studies with Sharon goatgrass revealed oligogenic resistance to leaf rust and stem rust. Wild barley also exhibited a wide range of ITs to leaf rust and stem rust; however, the overall frequency of resistance was lower than for Sharon goatgrass. The percentage of resistant accessions in wild barley was 25.8% for leaf rust and 5.7–20.1% for stem rust, depending on the race used. Resistance to the new virulent stem rust race TTKS (i.e. Ug99), present in eastern Africa, was found in both Sharon goatgrass (70% of accessions) and wild barley (25% of 20 accessions tested). Association mapping for stem rust resistance was applied in the WBDC using Diversity Arrays Technology (DArT) markers. Using the highly conservative P value threshold of 0.001, 14 and 15 significant marker associations were detected when the number of subpopulations (K value) was set for 10 and 8, respectively. These significant associations were in 9 and 8 unique chromosome bins, respectively. Two significant marker associations were detected for resistance to the wheat stem rust race MCCF in the same bin as the rpg4/Rpg5 complex on chromosome 7(5H). The presence of a major stem rust resistance gene in this bin on chromosome 7(5H) was validated in a bi-parental mapping population (WBDC accession Damon × cv. Harrington) constructed with DArT markers. The results from this study indicate that Sharon goatgrass and wild barley are rich sources of rust resistance genes for cultivated wheat and barley improvement, respectively, and that association mapping may be useful for positioning disease resistance genes in wild barley.


1999 ◽  
Vol 89 (6) ◽  
pp. 518-521 ◽  
Author(s):  
E. R. Kerber ◽  
T. Aung

The common wheat cultivar Thatcher and the backcross derivative Canthatch are moderately or fully susceptible to several races of stem rust because of a suppressor on chromosome 7DL that inhibits the expression of the relevant resistance gene(s). The incorporation of leaf rust resistance gene Lr34 into ‘Thatcher’ is known to enhance stem rust resistance. The effect of this gene in a ‘Canthatch’ background and its relationship with the 7DL suppressor were determined by replacing chromosome 7D of ‘Canthatch’ with 7D of ‘Chinese Spring’, which possesses Lr34 on the short arm. ‘Canthatch’ nullisomic 7D was crossed with ‘Chinese Spring’, followed by a succession of backcrosses to the nullisomic recurrent parent. Homozygous resistant disomic and monosomic substitution lines were recovered that exhibited the same resistant reaction as that of ‘Thatcher’ possessing Lr34 and as that of ‘Canthatch’ nullisomic 7D, in which the 7DL suppressor is absent. The results indicate that, in ‘Canthatch’, Lr34 permits expression of resistance genes normally inhibited by the 7DL suppressor. Furthermore, it is likely that, in ‘Thatcher’ and ‘Thatcher’ back-cross derivatives, Lr34 inactivates the 7DL suppressor.


2008 ◽  
Vol 43 (No. 2) ◽  
pp. 53-60 ◽  
Author(s):  
A. Hanzalová ◽  
V. Dumalasová ◽  
T. Sumí kova ◽  
P. Bartoš

Our field experiments confirmed the leaf rust resistance of cv. Renan in the Czech Republic. Whereas the leaf rust resistance gene <i>Lr37</i> possessed by Renan is generally effective as late as at the adult plant stage, we found one leaf rust isolate that caused resistant to moderately resistant reactions on NIL <i>Lr37</i> as well as on the cv. Renan already at the seedling stage. This isolate was used in the study of genetics of the leaf rust resistance of cv. Renan in greenhouse experiments. The presence of translocation from <i>Aegilops ventricosa</i> carrying the cluster of rust resistance genes <i>Lr37</i>, <i>Sr38</i> and <i>Yr17</i> was also determined by a PCR molecular marker. All experiments confirmed the presence of <i>Lr37</i> gene in cv. Renan. The presence of <i>Lr14a</i>, postulated earlier, could not be verified. The resistance of cv. Renan in the field was slightly higher than that of the line Tc/8//VPM1 possessing <i>Lr37</i>, which may indicate a more complex genetic base of leaf rust resistance in the cv. Renan. In the progeny of the cross Boka/Renan leaf rust resistance gene <i>Lr37</i> behaved as a recessive or partially dominant gene, stem rust resistance gene <i>Sr38</i> as a dominant gene.


Genome ◽  
1993 ◽  
Vol 36 (3) ◽  
pp. 476-482 ◽  
Author(s):  
H. S. Bariana ◽  
R. A. McIntosh

Inheritance studies showed that the VPM1-derived seedling resistances to stem rust, stripe rust, leaf rust, and powdery mildew were controlled by single genes; the genes for rust resistance were designated Sr38, Yr17, and Lr37, respectively, whereas the gene for resistance to powdery mildew was postulated to be Pm4b. Sr38, Yr17, and Lr37 were shown to be closely linked and distally located in the short arm of chromosome 2A. They showed very close repulsion linkage with Lr17 and were genetically independent of other genes known to be located in chromosome 2A. Previously unmapped, Yr1 appeared to be distally located in the long arm of chromosome 2A.Key words: stem rust, stripe rust, leaf rust, powdery mildew, monosomic analysis, telocentric mapping, genetic linkage.


2011 ◽  
Vol 39 (No. 1) ◽  
pp. 13-17 ◽  
Author(s):  
S. Šliková ◽  
E. Gregorová ◽  
P. Bartoš ◽  
J. Kraic

Cultivar Agrus, possessing a chromosomal substitution, and cultivar Sunnan, possessing a translocation from Thinopyrum ponticum (= Agropyron elongatum, 2n = 10x) with leaf rust resistance gene Lr19 against Puccinia triticina, were crossed with the susceptible winter wheat cultivars Sofia, Simona and L&iacute;via to transfer Lr19 into agronomi&shy;cally better genotypes by marker-assisted selection. Altogether 304 individuals of the F2 progeny were screened for endopeptidase phenotypes. We found null endopeptidase allele Ep-D1c (marker tightly liked with resistance gene Lr19) in 49 plants. The progenies of 40 plants of the F2 generation (with Ep-D1c) were reselected with the same marker and tested for leaf rust reaction. Results achieved with the isozyme marker corresponded with those of the resistance tests. We obtained 28 F3 families with resistance gene Lr19 confirmed by presence of the null endopeptidase allele and by tests for leaf rust reaction. Field tests showed that Agrus increased the height of plants in the progenies, and the smallest negative effect on yield components was observed in both crosses with cultivar Sunnan. &nbsp;


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Mesfin Kebede Gessese

Wheat production started in Australia around 1788 using early maturing varieties adapted to Australian conditions that were able to escape diseases as well as moisture stress conditions. Wheat production is concentrated on mainland Australia in a narrow crescent land considered as the wheat belt occupying an area of about 13.9 million hectares. Rusts are the most important production constraints to wheat production in the world and Australia causing significant yield losses and decreased the qualities of grains. Wheat is affected by three different types of rust diseases: leaf rust, stripe rust or yellow rust, and stem rust. Each species of the rust pathogen has many races or pathotypes that parasitize only on certain varieties of host species, which can only be traced and identified by differential cultivars. Pathotype surveillance is the basis for information on the virulence or pathogenic variations existing in a particular country or wheat growing region of the world. Studies in pathotype variation are conducted in controlled environments using multi-pathotype tests. The currently cultivated commercial wheat varieties of Australia possess leaf rust resistant genes: Lr1, Lr3a, Lr13, Lr13+, Lr14a, Lr17a, Lr17b, Lr20, Lr23, Lr24, Lr26, Lr27, Lr31, Lr34, Lr37, and Lr46; stem rust resistance genes: Sr2, Sr5, Sr8a, Sr8b, Sr9b, Sr9g, Sr11, Sr12, Sr13, Sr15, Sr17, Sr22, Sr24, Sr26, Sr30, Sr36, Sr38, and Sr57; and stripe rust resistance genes: Yr4, Yr9, Yr17, Yr18, Yr27, and Yr33. This paper discusses the historical and current significance of rusts to wheat production in the world with particular reference to Australia viz-a-viz detail description of each of the three rusts and their respective virulence variations through the resistance genes deployed in the commercial cultivars.


Sign in / Sign up

Export Citation Format

Share Document