Modeling of the stress-strain relationship for specimens made of S355J0 steel subjected to bending block loading with mean load

Author(s):  
R. Pawliczek ◽  
C.T Lachowicz

The paper presents results of calculation for modelling of the stressstrain relationship in the case of block loads with mean load value. A model, based on the stable hysteresis loops, was assumed and modified to use for block loading analysis. For stress history calculation, the proposed model and two other constitutive models were used. Results of fatigue test of specimens made of S355J0 steel subjected to bending block loading with mean load value are presented and used to verify the proposed model. In the tests, the mean load was increased and decreased in subsequent blocks. The changes of strain recorded during the tests shown in the paper indicate a different behavior of the material. Damage accumulation degree for block sequence was used to compare the results of calculations. It was shown, that stress history parameters (stress amplitude and mean stress value in this case) are similar for all investigated models.

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7023
Author(s):  
Roland Pawliczek ◽  
Dariusz Rozumek

In this study, a linear model of the transformation of the stress amplitude due to the mean value was used. The coefficient of the material sensitivity to cycle asymmetry with consideration of the dependence of this coefficient on the number of fatigue loading cycles is also used. A three-parameter surface model of limited stresses is proposed in this paper. The model is verified using the results of fatigue tests for cyclic bending and torsion under mean loads. The tests are performed for two types of alloy steels—S355J0 and S355J2G1W. Comparison of the allowable stress amplitudes obtained experimentally with those predicted using the proposed model shows errors of no more than 18%, with the area of the surface with the largest error being relatively small.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jian Li ◽  
Jianhua Guo ◽  
Zhangjun Dai ◽  
Lingfa Jiang ◽  
Shanxiong Chen

To reduce the difficulties associated with dynamic constitutive models, a model was established for soil in this study based on hypoelasticity. The stress-strain relationship in soil under a cyclic load was divided into three stages: initial loading, unloading, and reloading. The stress-strain relationship in each stage was ascertained using a hyperbolic equation. On this basis, the physical significance of the parameters in the model and their method of determination were described. The effects of the parameters on the stress-strain relationship were investigated and the integration algorithm of the model was established. Finally, the rationality of the proposed model was verified by conducting triaxial tests under conventional and cyclic loads. The results show that the model is able to adequately demonstrate all the stress-strain relations in the soil under both static and dynamic loads.


1985 ◽  
Vol 50 (11) ◽  
pp. 2396-2410
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

The study describes a method of modelling axial-radial circulation in a tank with an axial impeller and radial baffles. The proposed model is based on the analytical solution of the equation for vortex transport in the mean flow of turbulent liquid. The obtained vortex flow model is tested by the results of experiments carried out in a tank of diameter 1 m and with the bottom in the shape of truncated cone as well as by the data published for the vessel of diameter 0.29 m with flat bottom. Though the model equations are expressed in a simple form, good qualitative and even quantitative agreement of the model with reality is stated. Apart from its simplicity, the model has other advantages: minimum number of experimental data necessary for the completion of boundary conditions and integral nature of these data.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 162 ◽  
Author(s):  
Thorben Helmers ◽  
Philip Kemper ◽  
Jorg Thöming ◽  
Ulrich Mießner

Microscopic multiphase flows have gained broad interest due to their capability to transfer processes into new operational windows and achieving significant process intensification. However, the hydrodynamic behavior of Taylor droplets is not yet entirely understood. In this work, we introduce a model to determine the excess velocity of Taylor droplets in square microchannels. This velocity difference between the droplet and the total superficial velocity of the flow has a direct influence on the droplet residence time and is linked to the pressure drop. Since the droplet does not occupy the entire channel cross-section, it enables the continuous phase to bypass the droplet through the corners. A consideration of the continuity equation generally relates the excess velocity to the mean flow velocity. We base the quantification of the bypass flow on a correlation for the droplet cap deformation from its static shape. The cap deformation reveals the forces of the flowing liquids exerted onto the interface and allows estimating the local driving pressure gradient for the bypass flow. The characterizing parameters are identified as the bypass length, the wall film thickness, the viscosity ratio between both phases and the C a number. The proposed model is adapted with a stochastic, metaheuristic optimization approach based on genetic algorithms. In addition, our model was successfully verified with high-speed camera measurements and published empirical data.


Author(s):  
Theddeus Tochukwu Akano

Normal oral food ingestion processes such as mastication would not have been possible without the teeth. The human teeth are subjected to many cyclic loadings per day. This, in turn, exerts forces on the teeth just like an engineering material undergoing the same cyclic loading. Over a period, there will be the creation of microcracks on the teeth that might not be visible ab initio. The constant formation of these microcracks weakens the teeth structure and foundation that result in its fracture. Therefore, the need to predict the fatigue life for human teeth is essential. In this paper, a continuum damage mechanics (CDM) based model is employed to evaluate the fatigue life of the human teeth. The material characteristic of the teeth is captured within the framework of the elastoplastic model. By applying the damage evolution equivalence, a mathematical formula is developed that describes the fatigue life in terms of the stress amplitude. Existing experimental data served as a guide as to the completeness of the proposed model. Results as a function of age and tubule orientation are presented. The outcomes produced by the current study have substantial agreement with the experimental results when plotted on the same axes. There is a notable difference in the number of cycles to failure as the tubule orientation increases. It is also revealed that the developed model could forecast for any tubule orientation and be adopted for both young and old teeth.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2738
Author(s):  
Roland Pawliczek ◽  
Tadeusz Lagoda

The literature in the area of material fatigue indicates that the fatigue properties may change with the number of cycles. Researchers recommend taking this into account in fatigue life calculation algorithms. The results of simulation research presented in this paper relate to an algorithm for estimating the fatigue life of specimens subjected to block loading with a nonzero mean value. The problem of block loads using a novel calculation model is presented in this paper. The model takes into account the change in stress–strain curve parameters caused by mean strain. Simulation tests were performed for generated triangular waveforms of strains, where load blocks with changed mean strain values were applied. During the analysis, the degree of fatigue damage was compared. The results of calculations obtained for standard values of stress–strain parameters (for symmetric loads) and those determined, taking into account changes in the curve parameters, are compared and presented in this paper. It is shown that by neglecting the effect of the mean strain value on the K′ and n′ parameters and by considering only the parameters of the cyclic deformation curve for εm = 0 (symmetric loads), the ratio of the total degree of fatigue damage varies from 10% for εa = 0.2% to 3.5% for εa = 0.6%. The largest differences in the calculation for ratios of the partial degrees of fatigue damage were observed in relation to the reference case for the sequence of block n3, where εm = 0.4%. The simulation results show that higher mean strains change the properties of the material, and in such cases, it is necessary to take into account the influence of the mean value on the material response under block loads.


2021 ◽  
Vol 11 (8) ◽  
pp. 3636
Author(s):  
Faria Zarin Subah ◽  
Kaushik Deb ◽  
Pranab Kumar Dhar ◽  
Takeshi Koshiba

Autism spectrum disorder (ASD) is a complex and degenerative neuro-developmental disorder. Most of the existing methods utilize functional magnetic resonance imaging (fMRI) to detect ASD with a very limited dataset which provides high accuracy but results in poor generalization. To overcome this limitation and to enhance the performance of the automated autism diagnosis model, in this paper, we propose an ASD detection model using functional connectivity features of resting-state fMRI data. Our proposed model utilizes two commonly used brain atlases, Craddock 200 (CC200) and Automated Anatomical Labelling (AAL), and two rarely used atlases Bootstrap Analysis of Stable Clusters (BASC) and Power. A deep neural network (DNN) classifier is used to perform the classification task. Simulation results indicate that the proposed model outperforms state-of-the-art methods in terms of accuracy. The mean accuracy of the proposed model was 88%, whereas the mean accuracy of the state-of-the-art methods ranged from 67% to 85%. The sensitivity, F1-score, and area under receiver operating characteristic curve (AUC) score of the proposed model were 90%, 87%, and 96%, respectively. Comparative analysis on various scoring strategies show the superiority of BASC atlas over other aforementioned atlases in classifying ASD and control.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xiangwen Liao ◽  
Lingying Zhang ◽  
Jingjing Wei ◽  
Dingda Yang ◽  
Guolong Chen

User influence is a very important factor for microblog user recommendation in mobile social network. However, most existing user influence analysis works ignore user’s temporal features and fail to filter the marketing users with low influence, which limits the performance of recommendation methods. In this paper, a Tensor Factorization based User Cluster (TFUC) model is proposed. We firstly identify latent influential users by neural network clustering. Then, we construct a features tensor according to latent influential user’s opinion, activity, and network centrality information. Furthermore, user influences are predicted by the latent factors resulting from the temporal restrained CP decomposition. Finally, we recommend microblog users considering both user influence and content similarity. Our experimental results show that the proposed model significantly improves recommendation performance. Meanwhile, the mean average precision of TFUC outperforms the baselines with 3.4% at least.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Christina Ng ◽  
Susilawati Susilawati ◽  
Md Abdus Samad Kamal ◽  
Irene Mei Leng Chew

This paper aims at developing a macroscopic cell-based lane change prediction model in a complex urban environment and integrating it into cell transmission model (CTM) to improve the accuracy of macroscopic traffic state estimation. To achieve these objectives, first, based on the observed traffic data, the binary logistic lane change model is developed to formulate the lane change occurrence. Second, the binary logistic lane change is integrated into CTM by refining CTM formulations on how the vehicles in the cell are moving from one cell to another in a longitudinal manner and how cell occupancy is updated after lane change occurrences. The performance of the proposed model is evaluated by comparing the simulated cell occupancy of the proposed model with cell occupancy of US-101 next generation simulation (NGSIM) data. The results indicated no significant difference between the mean of the cell occupancies of the proposed model and the mean of cell occupancies of actual data with a root-mean-square-error (RMSE) of 0.04. Similar results are found when the proposed model was further tested with I80 highway data. It is suggested that the mean of cell occupancies of I80 highway data was not different from the mean of cell occupancies of the proposed model with 0.074 RMSE (0.3 on average).


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1266
Author(s):  
Weng Siew Lam ◽  
Weng Hoe Lam ◽  
Saiful Hafizah Jaaman

Investors wish to obtain the best trade-off between the return and risk. In portfolio optimization, the mean-absolute deviation model has been used to achieve the target rate of return and minimize the risk. However, the maximization of entropy is not considered in the mean-absolute deviation model according to past studies. In fact, higher entropy values give higher portfolio diversifications, which can reduce portfolio risk. Therefore, this paper aims to propose a multi-objective optimization model, namely a mean-absolute deviation-entropy model for portfolio optimization by incorporating the maximization of entropy. In addition, the proposed model incorporates the optimal value of each objective function using a goal-programming approach. The objective functions of the proposed model are to maximize the mean return, minimize the absolute deviation and maximize the entropy of the portfolio. The proposed model is illustrated using returns of stocks of the Dow Jones Industrial Average that are listed in the New York Stock Exchange. This study will be of significant impact to investors because the results show that the proposed model outperforms the mean-absolute deviation model and the naive diversification strategy by giving higher a performance ratio. Furthermore, the proposed model generates higher portfolio mean returns than the MAD model and the naive diversification strategy. Investors will be able to generate a well-diversified portfolio in order to minimize unsystematic risk with the proposed model.


Sign in / Sign up

Export Citation Format

Share Document