scholarly journals DEFORMING AND FRACTURE OF LINDEN AND PINE UNDER INTENSIVE DYNAMIC IMPACTS

2020 ◽  
Vol 82 (1) ◽  
pp. 43-51
Author(s):  
A.K. Lomunov ◽  
T.N. Yuzhina ◽  
L. Kruszka ◽  
W.W. Chen

The paper presents the results of dynamic tests under compression of two wood species: linden and pine under loading along and across the fibers. Dynamic tests were carried out using the modified Kolsky method with the realization of multi-cycle loading of the sample during one test. As a result, strain diagrams were obtained for uniaxial stress state taking into account additional loading cycles The use of the multi-cycle loading mode made it possible to obtain a significantly greater degree of the sample deformation than with traditional single-cycle loading. To create a pulse load, a gas gun was used. According to the experimental results, dynamic deformation diagrams were obtained, as well as ultimate strength and deformation characteristics, fracture energy for linden and pine were determined depending on the cutting angle of the samples and the strain rate. A strong anisotropy of the properties of the tested materials is observed: the samples have the greatest strength when a load is applied along the fibers, and the least - across the fibers. A positive effect of the strain rate is noted. The module of the load branch is non-linear and, as a rule, is smaller than the module of the unload branch (while maintaining the integrity of the sample). The nature of the deformation and fracture of the samples strongly depends on the angle of cutting-out. At cutting angle across the fibers, the deformation diagram after reaching a certain threshold value is close to an ideally plastic diagram. At cutting angle along the fibers, the initial portion of the diagrams is close to linear, i.e. elastic deformation takes place. However, after reaching a certain value (“yield strength”), the diagram becomes nonlinear. This kind of behavior takes place in those experiments in which the destruction of the samples occurs. For both wood species, there is a significant excess of energy absorption by samples cut and tested along the fibers, compared with samples cut and tested across the fibers.

2013 ◽  
Vol 690-693 ◽  
pp. 211-217
Author(s):  
Jin Gui Qin ◽  
Fang Yun Lu ◽  
Yu Liang Lin ◽  
Xue Jun Wen

Results of uni-axial tensile loading of three automotive steels at different strain rates (0.0011–3200s-1) are reported here. Quasi-static tensile tests were performed under the strain rate of 1.1×10-3 s-1 using an electromechanical universal testing machine, whereas dynamic tests were carried out under the strain rate in the range of 1100 to 3200 s-1 using a Split Hopkinson Tensile Bar apparatus. Based on the experimental results, the material parameters of widely used Johnson–Cook model which described the strain rate and temperature-dependent of mechanical behaviour were determined. The experiments show that strain-rate hardening is superior to thermal softening: yield stresses, tensile strength, deformation, and energy dissipation increase with the strain rate from quasi-static tests to dynamic tests. The Johnson–Cook model can describe the behaviour of these steels and provides the opportunity to study the material and structural response.


2019 ◽  
Vol 54 (5) ◽  
pp. 659-668 ◽  
Author(s):  
K Rahmani ◽  
GH Majzoobi ◽  
A Atrian

Mg–SiC nanocomposite samples were fabricated using split Hopkinson pressure bar for different SiC volume fractions and under different temperature conditions. The microstructures and mechanical properties of the samples including microhardness and stress–strain curves were captured from quasi-static and dynamic tests carried out using Instron and split Hopkinson pressure bar, respectively. Nanocomposites were produced by hot and high-rate compaction method using split Hopkinson pressure bar. Temperature also significantly affects relative density and can lead to 2.5% increase in density. Adding SiC-reinforcing particles to samples increased their Vickers microhardness from 46 VH to 68 VH (45% increase) depending on the compaction temperature. X-ray diffraction analysis showed that by increasing temperature from 25℃ to 450℃, the Mg crystallite size increases from 37 nm to 72 nm and decreases the lattice strain from 45% to 30%. In quasi-static tests, the ultimate compressive strength for the compaction temperature of 450℃ was improved from 123% for Mg–0 vol.% SiC to 200% for the Mg–10 vol.% SiC samples compared with those of the compaction at room temperature. In dynamic tests, the ultimate strength for Mg–10 vol.% SiC sample compacted at high strain rate increased remarkably by 110% compared with that for Mg–0 vol.% SiC sample compacted at low strain rate.


2016 ◽  
Vol 35 (3) ◽  
pp. 243-252
Author(s):  
Balhassn S. M. Ali ◽  
Tom H. Hyde ◽  
Wei Sun

AbstractCommonly used small creep specimen types, such as ring and impression creep specimens, are capable of providing minimum creep strain rate data from small volumes of material. However, these test types are unable to provide the creep rupture data. In this paper the recently developed two-bar specimen type, which can be used to obtain minimum creep strain rate and creep rupture creep data from small volumes of material, is described. Conversion relationships are used to convert (i) the applied load to the equivalent uniaxial stress, and (ii) the load line deformation rate to the equivalent uniaxial creep strain rate. The effects of the specimen dimension ratios on the conversion factors are also discussed in this paper. This paper also shows comparisons between two-bar specimen creep test data and the corresponding uniaxial creep test data, for grade P91 steel at 650°C.


2014 ◽  
Vol 566 ◽  
pp. 61-66
Author(s):  
Takashi Yokoyama ◽  
Kenji Nakai

The effect of strain rate up to nearly = 102/s on the tensile stress-strain properties of isotropic fine-grained nuclear-grade graphite IG-11 was investigated. Cylindrical tensile specimens machined out of graphite bars were used in both static and dynamic tests. The dynamic tensile stress-strain curves up to fracture were determined using the split Hopkinson bar (SHB). The low and intermediate strain-rate tensile stress-strain relations up to fracture were measured on an Instron 5500R testing machine. It was demonstrated that the ultimate tensile strength increases slightly, while the fracture strain and absorbed energy up to fracture decrease dramatically with increasing strain rate. Macro and microscopic examinations revealed a slight difference in the fracture surfaces between the static and dynamic tension specimens.


2020 ◽  
Vol 82 (3) ◽  
pp. 269-282
Author(s):  
A.M. Bragov ◽  
A.K. Lomunov ◽  
T.N. Yuzhina

The results of dynamic tests for compression across the fibers at room temperature of birch samples with air humidity are presented. Dynamic tests were carried out on a setup with a split Hopkinson bar according to the Kolsky method at a strain rate of ~2000 s–1. To assess the effect of the type of stress-strain state on the behavior of the material, in addition to specimens in the form of cylinders with its free expansion during loading (uniaxial stress state condition), specimens were tested in a rigid casing that prevents the radial expansion of the specimen (uniaxial deformation condition), as well as local compressive tests of rectangular board fragments. In the latter case, the material surrounding the loading zone plays the role of a compliant confining casing. In this case, a certain intermediate stress-strain state is realized in the sample. For these three types of stress-strain state, dynamic deformation diagrams were obtained with registration of additional loading cycles. Comparison of obtained deformation diagrams shows a significant effect of the type of stress-strain state on the behavior of the material under study. In the case of free expansion of the specimen in the radial direction, the absence of strain hardening is observed in the first loading cycle. In subsequent cycles, hardening is negligible. The deformation diagrams of specimens in the casing as well as board fragments are characterized by a noticeable increase in the modulus of the hardening branch with increasing deformation. In this case, it can be noted that the behavior of the material in the case of testing a piece of board is intermediate between the cases of uniaxial stress state and uniaxial strain state. Some mechanical characteristics of the material are determined using the diagrams obtained. The obtained experimental results can serve as the basis for the subsequent identification of the model of deformation and destruction of wood.


2019 ◽  
Vol 6 (4) ◽  
Author(s):  
Vladimir Bystrov ◽  
Nikolai Kozak ◽  
Dmitry Yaroshutin

The article presents results of the analysis of experimental-theoretical researches and dynamic tests of the composite steel-concrete superstructures of bridges in St. Petersburg, the Leningrad Region and the North-Western region of the Russian Federation. The authors analyzed the theoretical foundations of the coefficient of reduction of the calculated resistances γw, the real spectra of the forced vibrations of the most loaded elements, and made recommendations on the need to take into account the parameters that affect the actual dynamic loading and durability of bridge structures.


2020 ◽  
Vol 999 ◽  
pp. 83-90
Author(s):  
Xiao Ju Gao ◽  
Hasigaowa ◽  
Meng Yong Sun ◽  
Cheng Dong Liao ◽  
Wei Ping Huang ◽  
...  

SiC/B4C composite was obtained using the reaction sintering method with Si infiltration, which exhibited excellent mechanical properties. The dynamic compressive response was investigated using a Split Hopkinson pressure bar at high strain rates ranging from 0.4×103 to 1.2×103 s-1. The results show that the dynamic strength of the SiC/B4C composite obtains a peak value at a strain rate of 1000/s, while its strain increased continuously with increasing strain rate. The dynamic loading mode of SiC/B4C composite exhibited three deformation regions, including an inelastic deformation region, rapid loading region and failure region. The dynamic failure mode of SiC/B4C composite depended upon the strain rate.


2014 ◽  
Vol 584-586 ◽  
pp. 1089-1096
Author(s):  
Remdane Boutemeur ◽  
Mustapha Demidem ◽  
Abderrahim Bali ◽  
El Hadi Benyoussef

The aim of this study is to present a model for assessing the dynamic compression behaviour of a micro-concrete. This model is based on the results of numerous tests providing the developments of the mechanical characteristics of the material on a wide range of strain rate from 10-4s-1to 10+3s-1.The Split Hopkinson Pressure Bar (SHPB) dispositive, based on the wave propagation theory in materials, has-been adopted to carry out the dynamic tests on the investigated material. The proposed model is composed of two terms, each characterizing the different contributions noted in the two major explored areas of strain rate.


Sign in / Sign up

Export Citation Format

Share Document