scholarly journals Grid-Tie Rotating Solar Rooftop System Using Atmega

2021 ◽  
Author(s):  
K. Ushanandhini ◽  
A. Kiruthika ◽  
Dharmaprakash

This paper presents a grid-tie rotating solar rooftop system solar power project which is powered by using Atmega 328 microcontroller. It includes solar panel, LCD display, and battery charging circuit and an inverter circuit with sun tracking capability. This project represents whether a particular industrial or residential load would be powered by the photovoltaic panel or the company. This project is based on Atmega 328 micro-controller which controls the solar array by rotating it consistently with the position of sun. This energy obtained from the solar array is then stored in battery which is then sent back to power the domestic or industrial area. The remaining energy is then reverted to the power house through the gird-tie system. Hence with the assistance of this project, power usage can be reduced by the renewable source of energy and profit can be earned with the help of the power which is fed back to the grid.

2016 ◽  
Vol 16 (1) ◽  
pp. 30
Author(s):  
Handy Indra Regain Mosey

ABSTRAK Paper ini membahas tentang simulasi dan pembuatan rangkaian sistem kontrol pengisian baterai yang bersumber dari sebuah pembangkit listrik tenaga surya (Panel Surya). Pengisian baterai yang terlalu lama pada sebuah instalasi pembangkit listrik tenaga surya akan menyebabkan baterai cepat rusak sehingga dibutuhkan sebuah sistem yang dapat berfungsi sebagai pengontrol. Metode penelitian yang dilakukan yaitu dengan merangkai rangkaian yang didapat dari pustaka kemudian disimulasikan dengan perangkat lunak Proteus ISIS Profesional, selanjutnya dilakukan pembuatan rangkaian elektronika dalam sebuah PCB. Tegangan yang dihasilkan oleh baterai dibaca oleh sistem kontrol kemudian sistem akan memilih apabila tegangan yang diberikan oleh panel surya akan diisi pada baterai atau dialihkan kepada sebuah beban tambahan. Hasil yang didapatkan dalam penelitian menunjukan bahwa sistem kontrol pengisian baterai yang dibangun telah bekerja sesuai dengan simulasi dan dapat bekerja dengan baik. Kata-kata kunci: sistem kontrol baterai, switch, panel surya. SIMULATION AND CONSTRUCTION OF A BATTERY CHARGING CONTROLLER SYSTEM FOR SOLAR POWER PLANTS ABSTRACT This paper discusses about circuit simulation and construction of a battery charging control system from a solar power plant (Solar Panels). Charging the battery for too long on an installation of solar power plants will cause the battery to be broken and so we need a system that can function as a controller. The research method is made by simulating a baterry charging control circuit from a reference and then simulated by Proteus ISIS Professional software, then constructing the circuit on a PCB. The voltage produced by the solar panel is read by the control system then the system will prefer if the voltage supplied by the solar panels will be filled on the battery or transferred to an additional load. Result obtained in this study indicate that the baterry charging control system are working in accordance with the software simulation and can work as a baterry charging control system for a solar panel instalation. Keywords: Baterry charging control, switch, solar panel.


Author(s):  
Rohana Rohana ◽  
Suwarno Suwarno

<p>This paper discusses the optimization circuit based buck-boost converter for charging a battery from solar panel modules. The combination of the circuit buck-bust converter and a step-up current can increase the percentage of battery chargers. The method used in the optimization of solar power plants by increasing the output current from the solar panel to be optimized for battery charging, so it does not requires time and the batteries are safe. This is because sunlight can be used when bright about 4-5 hours per day. By increasing the output current of the current produced solar modules can accelerate the battery charging time. The combination of using the voltage stabilizer can produce a steady output voltage and current riser, although the voltage to an output of the solar panels is quite small (± 6 volts), can optimize the charger works well. By combining between the voltage stabilizer and a step-up current is obtained that the incoming voltage to the battery at 12,4V the current rise of 21.5% for a 12V battery, 7Ah, whereas the incoming voltage to the battery at 12,1V the current rise 10.99% for battery 12V, 120Ah. This study shows that the current rise is already above 10%.</p>


Aerospace ◽  
2019 ◽  
Vol 6 (5) ◽  
pp. 50 ◽  
Author(s):  
Syahrim Azhan Ibrahim ◽  
Eiki Yamaguchi

Nanosatellites, like CubeSat, have begun completing advanced missions that require high power that can be obtained using deployable solar panels. However, a larger solar array area facing the Sun increases the solar radiation torque on the satellite. In this study, we investigated solar radiation torque characteristics resulting from the increased area of solar panels on board the CubeSats. Three common deployable solar panel configurations that are commercially available were introduced and their reference missions were established for the purpose of comparison. The software algorithms used to simulate a variety of orbit scenarios are described in detail and some concerns are highlighted based on the results obtained. The solar power generation of the respective configurations is provided. The findings are useful for nanosatellite developers in predicting the characteristics of solar radiation torques and solar power generation that will be encountered when using various deployable solar panels, thus helping with the selection of a suitable configuration for their design.


2018 ◽  
Vol 99 (1) ◽  
pp. 121-136 ◽  
Author(s):  
Sue Ellen Haupt ◽  
Branko Kosović ◽  
Tara Jensen ◽  
Jeffrey K. Lazo ◽  
Jared A. Lee ◽  
...  

Abstract As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from the public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers. The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, which forms the basis of the system beyond about 6 h. For short-range (0–6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short- to midterm irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. This paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.


2021 ◽  
Vol 4 (2) ◽  
pp. 105-118
Author(s):  
Made Puji Dwicaksana ◽  
I Nyoman Satya Kumara ◽  
I Nyoman Setiawan ◽  
I Made Aditya Nugraha

This paper aims to review the current development of vessels with solar power to reference the research and development of solar power vessels in Indonesia. The research method is a systematic literature review on the development of solar-powered vessels and includes an online survey of vessels using solar PV. This study found 86 solar-powered vessels consisting of boats, utility boats, ferries, houseboats, research, vehicle carriers, dive boats, and yachts developed from 1988 to 2020. These solar-powered vessels were built for various functions such as competitions, cleaning the environment, passenger transportation, and water tourism.  Production of solar-powered vessels is increasing in terms of production volume, PV capacity, and battery capacity. In terms of PV configuration, the solar array is dominated by a fixed array structure. However, there have been innovations using sun-tracking, wind tracking airfoils, and expandable channels to increase PV capacity.


2016 ◽  
Vol 3 (1) ◽  
pp. 9-14 ◽  
Author(s):  
R. Ahiska ◽  
L. Nykyruy ◽  
G. Omer ◽  
G. Mateik

In this study, load characteristics of thermoelectric and photovoltaic solar panels areinvestigated and compared with each other with experiments. Thermoelectric solar panels convertsthe heat generated by sun directly to electricity; while, photovoltaic solar pales converts photonicenergy from sun to electricity. In both types, maximum power can be obtained when the loadresistance is equal to internal resistance. According to experimental results, power generated fromunit surface with thermoelectric panel is 30 times greater than the power generated by photovoltaicpanel. From a panel surface of 1 m2, thermoelectric solar panel has generated 4 kW electric power,while from the same surface, photovoltaic panel has generated 132 W only.


Author(s):  
Jay Dipak Betai ◽  
Hong Zhou

Abstract Solar trackers make solar panels perpendicular to solar ray to enhance solar power reaping. The relative motion between Sun and Earth has two degrees of freedom. Sun travels from east to west during daytime and also moves north and south due to Earth’s tilt. However, Sun’s daily north-south move is much smaller than its east-west move. Sensor-based solar trackers make solar panels perpendicular to solar ray based on sensor information. Although the existing sensor-based solar trackers increase solar power reaping from solar panels significantly, they also consume considerable power by driving solar trackers. Sensorless solar trackers make solar panels perpendicular to solar ray based on calculated solar location. The performance of sensorless solar trackers is not affected by bad weather. This paper is on sensorless solar trackers. Single-axis solar trackers have one degree of freedom solar tracking motion. They can catch Sun’s daily east-west movement effectively. The Sun’s small north-south movement can be covered for single-axis solar trackers by monthly or seasonal adjustment of their orientations. This research is focused on single-axis sensorless solar trackers that are driven by linear actuators. The advantages of linear actuator driven solar trackers are their self-locking function and high load carrying capacity. Their challenges include limited solar panel motion range, potential interference between an oscillating solar panel and its fixed supporting ground link, and high motor power consumption for solar tracking. The research of this paper is motivated by surmounting the challenges facing sensorless single-axis linear actuator driven solar trackers. In this research, linear actuator driven solar trackers will be designed and analyzed. The models of the designed solar trackers will be developed. The kinematic and dynamic performances of the modeled solar trackers will be analyzed and simulated. The results of this research will provide some guidelines for developing linear actuator driven solar trackers.


2022 ◽  
Author(s):  
Eleftherios Gdoutos ◽  
Charles F. Sommer ◽  
Alan Truong ◽  
Alexander Wen ◽  
Antonio Pedivellano ◽  
...  

2014 ◽  
Vol 21 (4) ◽  
pp. 733-740 ◽  
Author(s):  
Janusz Mroczka ◽  
Mariusz Ostrowski

Abstract Photovoltaic panels have a non-linear current-voltage characteristics to produce the maximum power at only one point called the maximum power point. In the case of the uniform illumination a single solar panel shows only one maximum power, which is also the global maximum power point. In the case an irregularly illuminated photovoltaic panel many local maxima on the power-voltage curve can be observed and only one of them is the global maximum. The proposed algorithm detects whether a solar panel is in the uniform insolation conditions. Then an appropriate strategy of tracking the maximum power point is taken using a decision algorithm. The proposed method is simulated in the environment created by the authors, which allows to stimulate photovoltaic panels in real conditions of lighting, temperature and shading.


Sign in / Sign up

Export Citation Format

Share Document