scholarly journals Research on the Tensile Properties of Packaging Film Based on Environmental Protection PVA-KGM

2021 ◽  
Author(s):  
Ligui Xiong ◽  
Liqiong Zhang

Konjac glucomannan (KGM) and poly (vinyl alcohol) (PVA) were mixed to form gel-like polyelectrolyte solution with glycerol and sorbitol as compound plasticizer, which was used to prepare packaging films via casting and drying. The results show that the tensile strength and elongation at break of the packaging films drop sharply when the blending temperature and blending time exceed 80 °C and 3.5 h. When the mass ratio of sorbitol and glycerol in the compound plasticizer ranges from 1:1 to 1:3, it is beneficial to improve the tensile strength of the packaging films. The microscopic reasons for the change of the tensile properties of the packaging films are mainly caused by diffusion-stop-continuing diffusion—precipitation of low-molecular electrolyte, which makes the system shift from equilibrium-homogeneous state- unbalanced state—heterogeneous state.

2011 ◽  
Vol 332-334 ◽  
pp. 1739-1742 ◽  
Author(s):  
Ling Li ◽  
Zheng Wei Jin ◽  
Jian Qing Wang

A novel chitosan/poly(vinyl alcohol) composite packaging films were prepared by the casting method, and the effects of chitosan concentration on the structures, mechanical properties, permeability for oxygen and water vapor were discussed in this study. Mechanical properties of these films, which were evaluated by the tensile test and the barrier properties showed that the elongation at break (E) of the composite films decreased rapidly with the addition of chitosan, whereas, the tensile strength (TS) presented an almost opposite trend. Both the water vapour and oxygen transmission rate values were increased with the increasing amount of the chitosan in the composite films. Based on the obtained results, the better property of the composites films would be prepared chitosan/poly(vinyl alcohol) blends at a weight ratio of 3/5, and the tensile strength and elongation at break of the packaging films were 34.12 MPa, 40.24 % respectively. It was also observed that the water vapor permeability coefficient (Pv) and the oxygen permeability coefficient (P) of chitosan/poly(vinyl alcohol) composite packaging films prepared with weight ratio of 3/5 were 1.99×10-15 g•cm/cm2•s•Pa and 7.98×10-16 cm3•cm/cm2•s•Pa respectively. The composite films in this paper can be used in fresh-keeping or other fields as a kind of green packaging material.


2011 ◽  
Vol 399-401 ◽  
pp. 381-384
Author(s):  
Chun Guang Li ◽  
Bin Guo Zheng ◽  
Wei Gong Peng ◽  
Wei Tian ◽  
Rui Zhang

The biodegradable composite films were prepared from bagasse microcrystalline cellulose as filler and poly(vinyl alcohol)(PVA) as polymeric matrix. The crystallinity, the tensile properties and the thermal properties of the composites were tested. Bagasse microcrystalline cellulose was distributed in PVA films as the crystalline state. The results show that the tensile properties and thermal properties were improved with the addition of bagasse microcrystalline cellulose. When bagasse microcrystalline cellulose mass fraction was 5%, both temperature of initial decomposition and maximum weight loss rate of composite film were raised by 11.71°C and 36.86°C, and the tensile strength increased by 17.88%, and the elongation at break increased by 36.62% compared to those of pure PVA.


2014 ◽  
Vol 525 ◽  
pp. 166-169 ◽  
Author(s):  
Chuan Bao Wu ◽  
Yang Bo

A series of such composites of poly (vinyl alcohol) and short-cut rice straw were prepared by hot-pressing method at different water medium amounts. And the effects of medium amount on the strength, elongation and hardness of composites were studied. Results indicate tensile strength of composite prepared with 5 mL medium is 119% higher than that with 10 mL medium at formula of 18 g rice straw and 12 g poly (vinyl alcohol). And this kind of strength difference is 98% higher at formula of 15 g rice straw and 15 g poly (vinyl alcohol). Elongation at break is 17.85% when 5 mL medium, 12 g poly (vinyl alcohol) and 18 g short-cut rice straw were used. However, it reaches 21.46% when 10 mL medium was used. The hardness fluctuation range shows no difference when preparation conditions were changed. But samples prepared with 5 mL medium roughly show higher hardness than that prepared with 10 mL medium.


2011 ◽  
Vol 287-290 ◽  
pp. 302-305
Author(s):  
Xi Ping Gao ◽  
Ke Yong Tang ◽  
Yu Qing Zhang

The mechanical properties, swelling, solubility, and optical properties of composite films with poly(vinyl alcohol) (PVA) and gelatin were studied. With increasing the PVA content in the composite films, the tensile strength (TS) and elongation at break (EB) of the films increase. The swelling and solubility are different with different gelatin/PVA ratios, with the lowest at 1:5.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012004
Author(s):  
May Teng Hooi ◽  
Siew Wei Phang ◽  
Hui Ying Yow ◽  
Edmund David ◽  
Ning Xin Kim ◽  
...  

Abstract This paper presents the interaction comparison of poly(vinyl) alcohol (PVA) with hydroxyapatite derived from Spanish Mackerel (SM) and Whitefin Wolf Herring (WWH) bones, in different processing method. PVA filament and solution casting method illustrated higher crystallinity in the FTIR graph as compared to the PVA pellet and filament extrusion method. Besides, minimal interactions between PVA with glycerol and HAp was observed as well. PVA pellet and solution casting method portrait higher interaction as compared to the PVA filament and extrusion method. As for the HAp of SM and WWH, WWH had higher crystallinity and better cell adhesion with a higher Ca/P ratio while SM had relatively better mechanical strength with Ca/P ratio near to stoichiometric value. The loading of HAp (0, 2.5, 5, 10, 20, 30%) does not affect interactions of PVA/HAp composite in FTIR, and thermal properties in TGA. However, it caused an increase in crystallinity at low HAp loading and decreased at higher loading of HAp above 10%. Upon addition of HAp, tensile strength increased and elongation at break decreased. As the loading of HAp increased, both mechanical properties decreased. Scaffold with WWH composite possessed lower tensile strength and higher elongation at break than SM composite. The result of mechanical properties corresponded to the SEM result. ANOVA analysis justified the effect of HAp variations and loading on the mechanical properties of the composite was prominent.


2016 ◽  
Vol 1133 ◽  
pp. 156-160 ◽  
Author(s):  
Ai Ling Pang ◽  
Hanafi Ismail ◽  
Azhar Abu Bakar

Tensile properties and morphological studies of linear low density polyethylene (LLDPE)/poly (vinyl alcohol) (PVA)/kenaf (KNF) composites were investigated. The composites with different KNF loading (0, 10, 20, 30, 40 phr) were prepared using a Thermo Haake Polydrive internal mixer at 150°C and 50 rpm for 10 min. The results indicated that tensile strength and elongation at break were decreased with increasing KNF loading, whereas tensile modulus showed the opposite trend. Tensile fractured surfaces observed by scanning electron microscopy showed better interfacial adhesion between LLDPE/PVA and KNF at 10 phr KNF loading.


2013 ◽  
Vol 747 ◽  
pp. 645-648 ◽  
Author(s):  
Koay Seong Chun ◽  
Salmah Husseinsyah ◽  
Hakimah Osman

Polypropylene/Cocoa Pod Husk (PP/CPH) biocomposites with different maleated polypropylene (MAPP) content were prepared via melt blending process using Brabender Plastrograph mixer. The tensile strength and tensile modulus of PP/CPH biocomposites increased with increasing of MAPP content. The PP/CPH biocomposites with 5 phr of MAPP showed the optimum improvement on tensile properties. However, the increased of MAPP content reduced the elongation at break of PP/CPH biocomposites. At 5 phr of MAPP content, PP/CPH biocomposites showed lowest elongation at break. Scanning electron microscope confirms the PP/CPH biocomposites with MAPP have better filler-matrix interaction and adhesion due to the effect of MAPP.


2018 ◽  
Vol 34 ◽  
pp. 01030 ◽  
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar ◽  
Hanafi Ismail

Effects of alkanolamide (ALK) addition on cure characteristics, swelling behaviour and tensile properties of silica-filled natural rubber (NR)/chloroprene rubber (CR) blends were investigated. The ALK was synthesized from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine, and incorporated into the silica-filled NR/CR blends as a non-toxic rubber additive. The ALK loadings were 0.0, 1.0, 3.0, 5.0 and 7.0 phr. It was found that the ALK exhibited shorter scorch and cure times and higher elongation at break of the silica-filled NR/CR blends. The ALK also exhibited higher torque differences, tensile modulus and tensile strength at a 1.0 phr of ALK loading and then decreased with further increases in the ALK loading. The swelling measurement proved that the 1.0 phr loading of ALK caused the highest degree in crosslink density of the silica-filled NR/CR blends.


2021 ◽  
Author(s):  
Yanhong Jin ◽  
Yuanyuan Jing ◽  
Wenxin Hu ◽  
Jiaxian Lin ◽  
Yu Cheng ◽  
...  

Abstract Lignin has been used as a sustainable and eco-friendly filler in composite fibers. However, lignin aggregation occurred at high lignin content, which significantly hindered the further enhancement of fiber performance. The incorporation of graphene oxide (GO) enhanced the mechanical properties of the lignin/poly(vinyl alcohol) (PVA) fibers and affected their structure. With the GO content increasing from 0 to 0.2%, the tensile strength of 5% lignin/PVA fibers increased from 491 MPa to 631 MPa, and Young's modulus increased from 5.91 GPa to 6.61 GPa. GO reinforced 30% lignin/PVA fibers also showed the same trend. The tensile strength increased from 455 MPa to 553 MPa, and Young's modulus increased from 5.39 GPa to 7 GPa. The best mechanical performance was observed in PVA fibers containing 5% lignin and 0.2% GO, which had an average tensile strength of 631 MPa and a Young’s modulus of 6.61 GPa. The toughness values of these fibers are between 9.9-15.6 J/g, and the fibrillar and ductile fracture microstructure were observed. Structure analysis of fibers showed that GO reinforced 5% lignin/PVA fibers had higher crystallinity, and evidence of hydrogen bonding among GO, lignin, and PVA in the gel fibers was revealed. Further, water resistance and swelling behavior of composite PVA fibers were studied to further evidence the structure change of composite fibers.


2021 ◽  
pp. 002199832110417
Author(s):  
Wei Chen ◽  
Yifan Wang ◽  
Kun Zhang ◽  
Fujun Xu

Carbon nanotube (CNT) fiber/yarn reinforced composites are considered as a new generation of advanced materials for applications in aerospace and space industry. In this study, two types of CNT composite yarns were produced by twisting CNT films and infiltrating with thermoset epoxy (EP) and thermoplastic poly vinyl alcohol (PVA) resins. The tensile strength of CNT/PVA and CNT/EP composite yarn was 409.91 MPa and 206.87 MPa, much higher than that of pure CNT yarn (129.94 MPa). After mono-cryogenic condition, the mechanical and electrical properties of CNT/EP and CNT/PVA composite yarns were both enhanced due to the structure reorder of the CNT bundles and improvement of interfacial bonding. However, after 60 times cyclic-cryogenic conditions, CNT/EP composite yarn showed a ∼10% degradation of tensile strength; while CNT/PVA composite yarn exhibited 6% increment. This study provides fundamental data of the CNT reinforced thermoset and thermoplastic composite yarns for their practical applications in cryogenic environment.


Sign in / Sign up

Export Citation Format

Share Document