Comparison of polymerization stresses of dental resin composites evaluated by two indentation fracture methods

2021 ◽  
pp. 1-10
Author(s):  
Masao Hanabusa ◽  
Saori Kimura ◽  
Nana Sakaeda ◽  
Kazuyoshi Okawa ◽  
Wataru Saito ◽  
...  

BACKGROUND: Polymerization stress is a major problem in dental resin composite restorations. Two indentation fracture methods can be applied to evaluate the stress, however, they often calculate different values. OBJECTIVE: To compare polymerization stresses of dental composites determined by the two methods. METHODS: Glass disks with a central hole were used. Two indentation fracture methods (Methods 1 and 2) were employed to determine the polymerization stresses of low-shrinkage and bulk-fill composites. Method 1: Cracks were made in the glass surface at 300 μm from the hole. The hole was filled with the composite. Polymerization stresses at 30 min after filling were calculated from the lengths of crack extension. Method 2: The hole was filled with the composite. Cracks were introduced in the glass at 1,000 μm from the hole at 30 min after the polymerization and the stresses were calculated from the crack lengths. Stresses at composite-glass bonded interface were calculated from the stress values obtained by the two methods. RESULTS: The bulk-fill composite generated the smallest interfacial stress, and Method 1 revealed lower values than Method 2. CONCLUSIONS: The composites yielded relatively small stresses. Method 1 calculated smaller stress values, possibly affected by the lower threshold stress intensity factor.

2020 ◽  
Vol 4 (2) ◽  
pp. 81 ◽  
Author(s):  
Tejas Barot ◽  
Deepak Rawtani ◽  
Pratik Kulkarni

Objective: The objective of this study was to explore the effect of Chlorhexidine-loaded Halloysite nanotubes (HNT/CHX) fillers (diverse mass fractions from 1 to 10 wt.%) on physicochemical, morphological and biological properties of newly developed experimental dental resin composite, in order to compare with the properties of composites composed of conventional glass fillers. Methods: The dental resin composites were prepared by incorporating various proportions of HNT/CHX. Six different groups of specimens: control group and five groups composed of varied mass fractions of HNT/CHX (e.g., 1.0, 2.5, 5.0, 7.5 and 10 wt.%) as fillers in each group were fabricated. Mechanical properties of the composites were monitored, using UTM. The degree of conversion of dental resin composites and their depth of cure were also evaluated. Antimicrobial properties of dental composites were studied in vitro by applying agar diffusion test on strain Streptococcus mutans and cytotoxicity were studied using NIH-3T3 cell line. Results: The incorporation of varied mass fractions (1.0 to 5.0 wt.%) of HNT/CHX in dental resins composites enhanced mechanical properties considerably with significant antibacterial activity. The slight decrease in curing depth and degree of conversion values of composites indicates its durability. No cytotoxicity was noticed on NIH-3T3 cell lines. Significance: Consistent distribution of HNT/CHX as a filler into dental composites could substantially improve not only mechanical properties but also biological properties of dental composites.


Author(s):  
Dalia Abdel Hamid ◽  
Amal Esawi ◽  
Inas Sami ◽  
Randa Elsalawy

Adhesively-bonded resin composites have the advantage of conserving sound tooth structure with the potential for tooth reinforcement, while at the same time providing an aesthetically acceptable restoration. However, no composite material has been able to meet both the functional needs of posterior restorations and the superior aesthetics required for anterior restoration. In an attempt to develop a dental resin composite that had the mechanical strength of hybrid composite materials and the superior polish and gloss retention associated with microfilled materials, nanofilled resin composites have been introduced in the market. Although nanofillers are the most popular fillers utilized in current visible light-activated dental resin composites and are claimed to be the solution for the most challenging material limitations as a universal restorative material, the mechanisms by which these fillers influence the resin composite properties are not well explained. In this study, some physical and mechanical properties of a nanofilled resin composite containing 60 vol. % zirconia and silica fillers were evaluated and compared to those of a microhybrid resin composite of the same composition. The nanofilled resin composite was found to have equivalent polymerization shrinkage and depth of cure to the microhybrid material but a slightly lower degree of conversion and density. Regarding mechanical behaviour, although the nanocomposite was found to exhibit significantly higher wear resistance, and equivalent flexural strength, its indentation modulus and nanohardness were slightly lower. Field-emission scanning electron microscopy (FE-SEM) analysis was conducted in order to evaluate the microstructure and to obtain a better understanding of the effect of the nanofillers on the behaviour of the nanocomposite.


2019 ◽  
Vol 53 (22) ◽  
pp. 3085-3092 ◽  
Author(s):  
Xin Wen ◽  
Rashed Almousa ◽  
Gregory G Anderson ◽  
Dong Xie

A novel antibacterial resin composite has been developed and evaluated. Glycerol dimethacrylate was derivatized to have an antibacterial moiety attached and incorporated to a conventional resin composite formulation. Compressive strength and bacterial viability were used to evaluate the modified resin composites. Results showed that the modified resin composites showed a significantly enhanced antibacterial activity along with improved mechanical and physical properties. It was found that bromine-containing resin composite showed a higher antibacterial activity than its chlorine-containing counterpart. The modified resin composites showed an increase of 37–41% in yield strength, 23–27% in modulus, 9–15% in diametral tensile strength and 5–12% in flexural strength and a decrease of 35–69% in bacterial viability, 20–37% in water sorption, 7–12% in shrinkage and 7–10% in compressive strength, as compared to unmodified resin composite. Within the limitations of this study, the modified resin composite may potentially be developed into a clinically useful dental restorative since it demonstrated good mechanical strengths and potent antibacterial function.


2010 ◽  
Vol 25 (3) ◽  
pp. 529-536 ◽  
Author(s):  
Yijun Wang ◽  
Isabel K. Lloyd

Nanoindentation and the viscous-elastic–plastic (VEP) model developed by Oyen and Cook for lightly filled thermoplastic polymer composites were used to characterize the elastic modulus, hardness, and viscoelastic response of a new high elastic modulus dental resin composite. The VEP model was used because loading rate studies indicated a viscous component in the loading/unloading response of our highly filled, thermosetting acrylic resin composites. Increasing the volume fraction of our high modulus filler increased the elastic modulus and hardness and decreased the viscous response in our composites. Coupling the filler and resin matrix with a commercial coupling agent like Metaltite or MPTMS (3-methacryloxypropyltrimethoxysilane) that ionically bonds to the filler and covalently bonds to the matrix decreases the viscous response and increases the hardness of the composite. The coupling agents did not affect the elastic modulus. The ability of the VEP model to predict load–displacement trajectories and the correlation of the elastic modulus and hardness values determined from the VEP model with those from the direct continuous stiffness measurement mode nanoindentation measurements indicate that the VEP model can be extended to highly filled, thermosetting systems. This is valuable since the potential to predict elastic, plastic, and viscous contributions to behavior should be valuable in the design and understanding of future highly filled resin composite systems.


2015 ◽  
Vol 26 (3) ◽  
pp. 272-276 ◽  
Author(s):  
Dayane Carvalho Ramos Salles de Oliveira ◽  
Karla Rovaris ◽  
Viviane Hass ◽  
Eduardo José Souza-Júnior ◽  
Francisco Haiter-Neto ◽  
...  

The aim of this study was to evaluate the effect of low shrinkage monomers on physicochemical properties of dental resin composites. Two low shrinkage resin composites: one with a crosslink branching monomer (Kalore, GC Corp) and a novel monomer (Venus Diamond, Heraeus Kulzer) were compared to a conventional resin composite formulation (Filtek Z250, 3M/ESPE). The volumetric shrinkage was evaluated by µCT analysis (n=5) and the physicochemical properties by degree of C=C conversion (DC), flexural strength (FS) and Young's modulus (YM) (n=10). All samples were light cured by a LED device (Radii, SDI) with 16 J/cm2. The results were analysed by one-way ANOVA and Tukey test for multiple comparisons (α=0.05). No statistical difference was found between µCT shrinkage values to Kalore (1.8%) and Venus Diamond (1.7%) (p≥0.05); Z250 presented statistical highest shrinkage value (2.0%). Kalore presented higher statistical DC (60.8%) than Venus Diamond (49.5%) and Z250 (49.6%). No statistical difference was found between FS or YM properties to Venus Diamond and Z250; Kalore presented statistical lowest FS and YM properties (p≥0.05). Conclusion: Using novel monomers seem to reduce polymerization shrinkage without affecting the physicochemical properties evaluated of resin composites rather than using crosslink branching monomers.


2013 ◽  
Vol 795 ◽  
pp. 626-630 ◽  
Author(s):  
Saad Omar Alsharif ◽  
Md Akil Hazizan ◽  
Nasser Abbas Abd El-Aziz ◽  
Zainal Arifin Ahmad

The aim of this study is to investigate the effect of filler loading on the sorption and solubility of Simulated Body Fluid (SBF) of self-prepared micro dental resin composites. The prepared resin composite was based on silica (SiO2) particles and bisphenol-a-glycidyl methacrylate (Bis-GMA) as a base monomer and triethylene glycol dimethacrylate (TEGDMA) as a co-monomer. The filler was mixed with monomers, in proportions of 40, 50 and 60 wt.%. A resin matrix containing 0 wt.% filler was used as the control composition to evaluate the effect of filler loading on the sorption and solubility of SBF. The experimental methods were based on the procedure mentioned in the ISO 4049 (2009) standard for dentistry-Polymer-based restorative Materials. The sorption and solubility of resin matrix/SiO2composite decreased gradually as the filler loading increased. The increase of filler loading showed significant differences in the sorption and solubility as tested by ANOVA (P= 0.000).


2015 ◽  
Vol 815 ◽  
pp. 336-341
Author(s):  
Shuang Bao ◽  
Rui Li Wang ◽  
Bin Sun ◽  
Xiao Ze Jiang ◽  
Mei Fang Zhu

To explore the preparation of novel dental resin composites with enhanced properties, two commercial silica particles with sizes of around 1μm and 40 nm were chosen as inorganic fillers, and firstly surface functionalized by 3-methacryloxypropyltrimethoxysilane (γ-MPS) to incorporate cross-linkable vinyl groups onto the surface of fillers. Then the modified fillers were blended with organic monomers, bisphenolAdiglycidyldimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA), to fabricate the resin compositeswith a three-roll mixer.Resin composites with various weight percentage of fillers and component ratio of microparticle and nanoparticle were prepared. Surface functionalization of silica particles was characterized by fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), and mechanical properties degree of conversion, and depth of cure of the resultant resin composites were investigated byuniversal testing machineand FTIR. The results indicated that surface modification of silica particles was successful and the surface organic contents were 3.29% and 4.34%, respectively. Among the studied resin composites, the resin composite with 75 wt.% silica particles (59 wt.% microparticles and 16 wt.% nanoparticles) presented the highest value of depth of cure (5.52 ± 0.07 mm), and optimum mechanical properties such as flexural strength (149.8 ± 3.3 MPa), flexural modulus (13.8 ± 0.06 GPa), compressive strength (340.6 ± 8.3 MPa) and Vicker’smicrohardness (78.26 ± 2.45 HV). The study of dental resin composites fabricated from commercial silica particles with excellent properties might provide a new sight for realizing the preparation of this kind of dental resin composites in an industrial scale.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4304
Author(s):  
Shu-Fen Chuang ◽  
Chu-Chun Liao ◽  
Jui-Che Lin ◽  
Yu-Cheng Chou ◽  
Tsung-Lin Lee ◽  
...  

Blue light (BL) curing on dental resin composites results in gradient polymerization. By incorporating upconversion phosphors (UP) in resin composites, near-infrared (NIR) irradiation may activate internal blue emission and a polymerization reaction. This study was aimed to evaluate the competency of the NIR-to-BL upconversion luminance in polymerizing dental composites and to assess the appropriate UP content and curing protocol. NaYF4 (Yb3+/Tm3+ co-doped) powder exhibiting 476-nm blue emission under 980-nm NIR was adapted and ball-milled for 4–8 h to obtain different particles. The bare particles were assessed for their emission intensities, and also added into a base composite Z100 (3M EPSE) to evaluate their ability in enhancing polymerization under NIR irradiation. Experimental composites were prepared by dispensing the selected powder and Z100 at different ratios (0, 5, 10 wt% UP). These composites were irradiated under different protocols (BL, NIR, or their combinations), and the microhardness at the irradiated surface and different depths were determined. The results showed that unground UP (d50 = 1.9 μm) exhibited the highest luminescence, while the incorporation of 0.4-μm particles obtained the highest microhardness. The combined 20-s BL and 20–120-s NIR significantly increased the microhardness on the surface and internal depths compared to BL correspondents. The 5% UP effectively enhanced the microhardness under 80-s NIR irradiation but was surpassed by 10% UP with longer NIR irradiation. The combined BL-NIR curing could be an effective approach to polymerize dental composites, while the intensity of upconversion luminescence was related to specific UP particle size and content. Incorporation of 5–10% UP facilitates NIR upconversion polymerization on dental composites.


Author(s):  
Fatin A. Hasanain

Aims: This work aims to assess the flexural strength and depth of cure of Optishade, Omnichroma and Z350 dental resin composites. Study Design: Experimental Laboratory Study. Methods: To assess flexural strength as per ISO standards, 15 samples of each of the three materials were made (n=5) with the dimensions 25x2x2 mm. They were then subjected to 3 point bending testing on a universal testing machine. To assess depth of cure as per ISO standard, 15 cylindrical samples 4 mm in diameter and 6 mm in height were created (n=5) and scraping test was performed. Results: There was a significant difference between the 3 materials in both flexural strength and depth of cure. Z350 had the lowest depth of cure and the highest flexural strength. Conclusion: Within the limitations of this study, all three tested materials fell within the ISO requirementsfor dental resin compositesfor both flexural strength and depth of cure.


Author(s):  
Parisa Amiri ◽  
Zahra Talebi ◽  
Dariush Semnani ◽  
Rouhollah Bagheri ◽  
Hossein Fashandi

AbstractIn the present work, polyacrylonitrile (PAN) nanofibers reinforced dental composites were investigated to achieve the improved interfacial adhesion between the PAN nanofiber and resin matrix using surface modification of nanofibers. PAN nanofibers mat were prepared by electrospinning and then, surface treated with the activated bisphenol A glycidyl methacrylate (Bis-GMA)/triethyleneglycol dimethacrylate (TEGDMA) (50/50 mass ratio) dental resin followed by photo-curing. Also, the treated nanofibers mat was milled into a powder to achieve the uniform distribution of nanofibers in the matrix resin. The reinforced dental composite were prepared by mixing the various mass fraction of the powder (0.5–15 wt%) with the Bis-GMA/TEGDMA dental monomers. The effect of weight ratio of surface-modified nanofibers to blend resin on the chemical structure, morphology, compression and flexural properties, color and polymerization shrinkage of dental composites was evaluated. The results showed that using surface-treated nanofibers with content of 5 wt% enhanced the compression strength, flexural strength, flexural modulus and work of rupture of the resultant dental composite by factors of 23%, 7%, 80%, and 145%, respectively, comparing to the unreinforced neat resin. Also, the polymerization shrinkage reduces by 37%. These significant improved properties of the dental composite could be due to the semi-interpenetration network formation between surface-modified nanofibers and resin matrix and well distribution of nanofibers in the dental resin. Further increasing the nanofiber content led to poor mechanical properties of obtained dental composites. The results also, revealed that the color of resin composite could be whiter using modified PAN nanofibers as the filler.


Sign in / Sign up

Export Citation Format

Share Document