Weighted correlation network analysis identifies FN1, COL1A1 and SERPINE1 associated with the progression and prognosis of gastric cancer

2021 ◽  
pp. 1-17
Author(s):  
Qiaoyun Zhao ◽  
Jun Xie ◽  
Jinliang Xie ◽  
Rulin Zhao ◽  
Conghua Song ◽  
...  

BACKGROUND: Gastric cancer (GC) is one of the most deadliest tumours worldwide, and its prognosis remains poor. OBJECTIVE: This study aims to identify and validate hub genes associated with the progression and prognosis of GC by constructing a weighted correlation network. METHODS: The gene co-expression network was constructed by the WGCNA package based on GC samples and clinical data from the TCGA database. The module of interest that was highly related to clinical traits, including stage, grade and overall survival (OS), was identified. GO and KEGG pathway enrichment analyses were performed using the clusterprofiler package in R. Cytoscape software was used to identify the 10 hub genes. Differential expression and survival analyses were performed on GEPIA web resources and verified by four GEO datasets and our clinical gastric specimens. The receiver operating characteristic (ROC) curves of hub genes were plotted using the pROC package in R. The potential pathogenic mechanisms of hub genes were analysed using gene set enrichment analysis (GSEA) software. RESULTS: A total of ten modules were detected, and the magenta module was identified as highly related to OS, stage and grade. Enrichment analysis of magenta module indicated that ECM-receptor interaction, focal adhesion, PI3K-Akt pathway, proteoglycans in cancer were significantly enriched. The PPI network identified ten hub genes, namely COL1A1, COL1A2, FN1, POSTN, THBS2, COL11A1, SPP1, MMP13, COMP, and SERPINE1. Three hub genes (FN1, COL1A1 and SERPINE1) were finally identified to be associated with carcinogenicity and poor prognosis of GC, and all were independent risk factors for GC. The area under the curve (AUC) values of FN1, COL1A1 and SERPINE1 for the prediction of GC were 0.702, 0.917 and 0.812, respectively. GSEA showed that three hub genes share 15 common upregulated biological pathways, including hypoxia, epithelial mesenchymal transition, angiogenesis, and apoptosis. CONCLUSION: We identified FN1, COL1A1 and SERPINE1 as being associated with the progression and poor prognosis of GC.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7091 ◽  
Author(s):  
Bodong Xu ◽  
Zhigang Bai ◽  
Jie Yin ◽  
Zhongtao Zhang

BackgroundThe plasminogen activation system plays a pivotal role in regulating tumorigenesis. In this work, we aim to identify key regulators of plasminogen activation associated with tumorigenesis and explore potential mechanisms in gastric cancer (GC).MethodsGene profiling datasets were extracted from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were screened for and obtained by the GEO2R tool. The Database for Annotation, Visualization and Integrated Discovery was used for GO and KEGG enrichment analysis. Gene set enrichment analysis (GSEA) was performed to verify molecular signatures and pathways among The Cancer Genome Atlas or GEO datasets. Correlations between SERPINE1 and markers of epithelial-to-mesenchymal transition (EMT) were analyzed using the GEPIA database and quantitative real-time PCR (qRT-PCR). Interactive networks of selected genes were built by STRING and Cytoscape software. Finally, selected genes were verified with the Kaplan–Meier (KM) plotter database.ResultsA total of 104 overlapped upregulated and 61 downregulated DEGs were obtained. Multiple GO and KEGG terms associated with the extracellular matrix were enriched among the DEGs. SERPINE1 was identified as the only regulator of angiogenesis and the plasminogen activator system among the DEGs. A high level of SERPINE1 was associated with a poor prognosis in GC. GSEA analysis showed a strong correlation between SERPINE1 and EMT, which was also confirmed with the GEPIA database and qRT-PCR validation. FN1, TIMP1, MMP2, and SPARC were correlated with SERPINE1.The KM plotter database showed that an overexpression of these genes correlated with a shorter survival time in GC patients.ConclusionsIn conclusion, SERPINE1 is a potent biomarker associated with EMT and a poor prognosis in GC. Furthermore, FN1, TIMP1, MMP2, and SPARC are correlated with SERPINE1 and may serve as therapeutic targets in reversing EMT in GC.


Author(s):  
Bo Xiao ◽  
Liyan Liu ◽  
Zhuoyuan Chen ◽  
Aoyu Li ◽  
Pingxiao Wang ◽  
...  

Melanoma is the most common cancer of the skin, associated with a worse prognosis and distant metastasis. Epithelial–mesenchymal transition (EMT) is a reversible cellular biological process that plays significant roles in diverse tumor functions, and it is modulated by specific genes and transcription factors. The relevance of EMT-related lncRNAs in melanoma has not been determined. Therefore, RNA expression data and clinical features were collected from the TCGA database (N = 447). Melanoma samples were randomly assigned into the training (315) and testing sets (132). An EMT-related lncRNA signature was constructed via comprehensive analyses of lncRNA expression level and corresponding clinical data. The Kaplan-Meier analysis showed significant differences in overall survival in patients with melanoma in the low and high-risk groups in two sets. Receiver operating characteristic (ROC) curves were used to measure the performance of the model. Cox regression analysis indicated that the risk score was an independent prognostic factor in two sets. Besides, a nomogram was constructed based on the independent variables. Gene Set Enrichment Analysis (GSEA) was applied to evaluate the potential biological functions in the two risk groups. Furthermore, the melanoma microenvironment was evaluated using ESTIMATE and CIBERSORT algorithms in the risk groups. This study indicates that EMT-related lncRNAs can function as potential independent prognostic biomarkers for melanoma survival.


2020 ◽  
Author(s):  
Mohamed Elshaer ◽  
Ahmed Hammad ◽  
Xiu Jun Wang ◽  
Xiuwen Tang

Abstract BackgroundKEAP1-NRF2 pathway alterations were identified in many cancers including, esophageal cancer (ESCA). Identifying biomarkers that are associated with mutations in this pathway will aid in defining this cancer subset; and hence in supporting precision and personalized medicine. MethodsIn this study, 182 tumor samples from the Cancer Genome Atlas (TCGA)-ESCA RNA-Seq V2 level 3 data were segregated into two groups KEAP1-NRF2-mutated (22) and wild-type (160).The two groups were subjected to differential gene expression analysis, and we performed Gene Set Enrichment Analysis (GSEA) to determine all significantly affected biological pathways. Then, the enriched gene set was integrated with the differentially expressed genes (DEGs) to identify a gene signature regulated by the KEAP1-NRF2 pathway in ESCA. Furthermore, we validated the gene signature using mRNA expression data of ESCA cell lines provided by the Cancer Cell Line Encyclopedia (CCLE). The identified signature was tested in 3 independent ESCA datasets to assess its prognostic value.ResultsWe identified 11 epithelial-mesenchymal transition (EMT) genes regulated by the KEAP1-NRF2 pathway in ESCA patients. Five of the 11 genes showed significant over-expression in KEAP1-NRF2-mutated ESCA cell lines. In addition, the over-expression of these five genes was significantly associated with poor survival in 3 independent ESCA datasets, including the TCGA-ESCA dataset.ConclusionAltogether, we identified a novel EMT 5-gene signature regulated by the KEAP1-NRF2 axis and this signature is strongly associated with metastasis and drug resistance in ESCA. These 5-genes are potential biomarkers and therapeutic targets for ESCA patients in whom the KEAP1-NRF2 pathway is altered.


Author(s):  
Junji Kurashige ◽  
Takehiro Yokobori ◽  
Kosuke Mima ◽  
Genta Sawada ◽  
Yusuke Takahashi ◽  
...  

2012 ◽  
Vol 13 (5) ◽  
pp. 6399-6406 ◽  
Author(s):  
Wen-Fang Liu ◽  
Shu-Rong Ji ◽  
Jian-Jun Sun ◽  
Yi Zhang ◽  
Zhong-Yan Liu ◽  
...  

2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Zhenlin Wang ◽  
Chenting Ying ◽  
Anke Zhang ◽  
Houshi Xu ◽  
Yang Jiang ◽  
...  

Abstract The hematopoietic cell kinase (HCK), a member of the Src family protein-tyrosine kinases (SFKs), is primarily expressed in cells of the myeloid and B lymphocyte lineages. Nevertheless, the roles of HCK in glioblastoma (GBM) remain to be examined. Thus, we aimed to investigate the effects of HCK on GBM development both in vitro and in vivo, as well as the underlying mechanism. The present study found that HCK was highly expressed in both tumor tissues from patients with GBM and cancer cell lines. HCK enhanced cell viability, proliferation, and migration, and induced cell apoptosis in vitro. Tumor xenografts results also demonstrated that HCK knockdown significantly inhibited tumor growth. Interestingly, gene set enrichment analysis (GSEA) showed HCK was closed associated with epithelial mesenchymal transition (EMT) and TGFβ signaling in GBM. In addition, we also found that HCK accentuates TGFβ-induced EMT, suggesting silencing HCK inhibited EMT through the inactivation of Smad signaling pathway. In conclusion, our findings indicated that HCK is involved in GBM progression via mediating EMT process, and may be served as a promising therapeutic target for GBM.


2021 ◽  
Author(s):  
yan li ◽  
yiping li ◽  
rongzhong xu ◽  
liubing lin ◽  
bo zhang ◽  
...  

Abstract Background: The baculoviral IAP repeat containing 5 (BIRC5) related to epithelial-mesenchymal transition (EMT) plays a crucial role in the pathogenesis of hepatocellular carcinoma (HCC). However, it remains unclear whether BIRC5-related genes can be used as prognostic markers of HCC. Methods: Kaplan-Meier (K-M) survival curve was used to assess the Overall Survival (OS) of high- and low-expression group divided by the median of BIRC5 expression. The differentially expressed genes (DEGs) between the two groups were screened using the limma package, and performed the functional enrichment analysis by the clusterProfiler package. WGCNA was used to analyze the relationship of the module and the clinical traits. The risk signature was constructed by univariate and multivariate Cox regression analyses and the enrichment analysis of genes in the risk signature was performed by the Intelligent pathway analysis (IPA). The immunophenoscore (IPS) and the tumor immune dysfunction and exclusion (TIDE) were used to estimate the clinical significance of the risk groups.Results: BIRC5 was high-expressed in HCC samples and associated with a poor prognosis (p-value < 0.0001). WGCNA screened 180 module genes which were overlapped with the 241 DEGs, ultimately getting 33 candidate genes. After the Cox regression analyses, CENPA, CDCA8, EZH2, KIF20A, KPNA2, CCNB1, KIF18B and MCM4 were preserved and used to construct risk signature, followed by calculating the risk score. The patients in high-risk groups stratified by median of the risk score were associated with a poor prognosis. The risk score had high accuracy [the area under the curve (AUC) >0.72] and was closely associated with clinicopathological characteristics of HCC patients. IPA suggested that the 8 genes were enriched in Cancer and Immunological disease related pathways. IPS and TIDE score indicated that the genes in low-risk group could cause an immune response, and patients in the low-risk group may be more sensitive to the immune checkpoint blockade (ICB) therapy.Conclusion: The risk score constructed by the 8 genes could not only predict the clinical outcome but also distinguish the cohort of ICB therapy in HCC, which exerted a vital value in treatment and prognosis of HCC.


2020 ◽  
Author(s):  
Qiaoyun Zhao ◽  
Rulin Zhao ◽  
Conghua Song ◽  
Huan Wang ◽  
Jianfang Rong ◽  
...  

Abstract Background Insulin-like growth factor binding protein-7 (IGFBP7) contributes to multiple biological processes in various tumors. However, the role of IGFBP7 in gastric cancer (GC) is still undetermined. The study aims to explore the role of IGFBP7 in GC via an integrated bioinformatics analysis.Methods IGFBP7 expression levels in GC and its normal gastric tissues were analyzed using multiple databases, including the Tumor Immune Estimation Resource (TIMER), Oncomine, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The methylation analysis was conducted with MEXPRESS, UALCAN and Xena online tools. The survival analysis was conducted using the Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Coexpressed genes of IGFBP7 were selected with the cBioPortal tool and enrichment analysis was conducted with the clusterProfiler package in R software. Gene set enrichment analysis (GSEA) was performed to explore the IGFBP7-related biological processes involved in GC. Correlations between IGFBP7 and immune cell infiltrates were analyzed using the TIMER database.Results IGFBP7 expression was significantly upregulated in GC and correlated with stage, grade, tumor status and Helicobacter pylori infection. High IGFBP7 expression and low IGFBP7 methylation levels were significantly associated with short survival of patients with GC. Univariate and multivariate analyses revealed that IGFBP7 was an independent risk factor for GC. The coexpressed genes LHFPL6, SEPTIN4, HSPB2, LAYN and GGT5 predicted unfavorable outcomes of GC. Enrichment analysis showed that the coexpressed genes were involved in extracellular matrix (ECM)-related processes. GSEA indicated that IGFBP7 was positively related to ECM and inflammation-related pathways. TIMER analysis indicated that the IGFBP7 expression level was strongly correlated with genes related to various infiltrating immune cells in GC, especially with gene markers of tumor associated macrophages (TAMs).Conclusions We demonstrate that increased IGFBP7 expression correlates with poor prognosis and immune cell infiltration in GC. IGFBP7 might be a potential biomarker for the diagnosis and targeted therapy for GC.


2021 ◽  
Vol 2021 ◽  
pp. 1-35
Author(s):  
Huiyong Xu ◽  
Huilai Wan ◽  
Maoshu Zhu ◽  
Lianghua Feng ◽  
Hui Zhang ◽  
...  

Objective. Epithelial-mesenchymal transition (EMT) exerts a key function in cancer initiation and progression. Herein, we aimed to develop an EMT-based prognostic signature in gastric cancer. Methods. The gene expression profiles of gastric cancer were obtained from TCGA dataset as a training set and GSE66229 and GSE84437 datasets as validation sets. By LASSO regression and Cox regression analyses, key prognostic EMT-related genes were screened for developing a risk score (RS) model. Potential small molecular compounds were predicted by the CMap database based on the RS model. GSEA was employed to explore signaling pathways associated with the RS. ESTIMATE and seven algorithms (TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC) were applied to assess the RS and immune microenvironment. Results. This study developed an EMT-related gene signature comprised of SERPINE1, PCOLCE2, MATN3, and DKK1. High-RS patients displayed poorer survival outcomes than those with low RS. ROC curves demonstrated the robustness of the model in predicting the prognosis. After external validation, the RS model was an independent risk factor for gastric cancer. Several compounds were predicted for gastric cancer treatment based on the RS model. ECM receptor interaction, focal adhesion, pathway in cancer, TGF-beta, and WNT pathways were distinctly activated in high-RS samples. Also, high RS was significantly associated with increased stromal and immune scores and increased infiltration of CD4+ T cell, CD8+ T cell, cancer-associated fibroblast, and macrophage in gastric cancer tissues. Conclusion. Our findings suggested that the EMT-related gene model may robustly predict gastric cancer prognosis, which could improve the efficacy of personalized therapy.


2020 ◽  
Author(s):  
Xiaohong Hou ◽  
Guiyin Zhou ◽  
Yinchun Fan ◽  
Qiang Zhang ◽  
Chengming Xiang ◽  
...  

Abstract Background Glioblastoma (GBM) is one of the most malignant tumors that can afflict the central nervous system. Previous studies have observed that there are individual differences in the treatment response of immune checkpoint inhibitors in glioblastoma. This study’s aim is to ascertain the factors that may affect the efficacy of immunosuppressant therapy. Methods The clinical data of this study were obtained from a public database. Then, the data was analyzed and processed by R software and corresponding R package. To verify the results of the analysis, information was gathered from 89 GBM patients in our hospital and thereafter the corresponding paraffin sections were stained and quantitatively analyzed by immunohistochemistry. Results From the analysis, it was observed that both CD276 and HAVCR2 were significantly overexpressed in GBM and could be associated with patient prognosis. The analysis of single cell RNA sequencing data and GBM data analysis found an immune subtype with poor prognosis. Further analysis found that the high expression of CD276, HAVCR2 and CD163 was closely related to epithelial-mesenchymal transition (EMT) and could affect the patient prognosis of PD-L1 high expression. GSVA enrichment analysis showed that CD276, HAVCR2 and CD163 might induce EMT by JAK-STAT3 signaling pathway, and RUNX1 and IKZF1 might be transcription factors that regulate CD276/HAVCR2 high expression. Conclusions We found an immune subtype with poor prognosis of GBM, the high expression of CD276, HAVCR2 and CD163 with EMT are closely related and may be one of the factors affecting the efficacy of Anti-PD-L1.


Sign in / Sign up

Export Citation Format

Share Document