scholarly journals Increased IGFBP7 Expression Correlates with Poor Prognosis and Immune Infiltration in Gastric Cancer: An Integrated Bioinformatics Analysis

2020 ◽  
Author(s):  
Qiaoyun Zhao ◽  
Rulin Zhao ◽  
Conghua Song ◽  
Huan Wang ◽  
Jianfang Rong ◽  
...  

Abstract Background Insulin-like growth factor binding protein-7 (IGFBP7) contributes to multiple biological processes in various tumors. However, the role of IGFBP7 in gastric cancer (GC) is still undetermined. The study aims to explore the role of IGFBP7 in GC via an integrated bioinformatics analysis.Methods IGFBP7 expression levels in GC and its normal gastric tissues were analyzed using multiple databases, including the Tumor Immune Estimation Resource (TIMER), Oncomine, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The methylation analysis was conducted with MEXPRESS, UALCAN and Xena online tools. The survival analysis was conducted using the Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Coexpressed genes of IGFBP7 were selected with the cBioPortal tool and enrichment analysis was conducted with the clusterProfiler package in R software. Gene set enrichment analysis (GSEA) was performed to explore the IGFBP7-related biological processes involved in GC. Correlations between IGFBP7 and immune cell infiltrates were analyzed using the TIMER database.Results IGFBP7 expression was significantly upregulated in GC and correlated with stage, grade, tumor status and Helicobacter pylori infection. High IGFBP7 expression and low IGFBP7 methylation levels were significantly associated with short survival of patients with GC. Univariate and multivariate analyses revealed that IGFBP7 was an independent risk factor for GC. The coexpressed genes LHFPL6, SEPTIN4, HSPB2, LAYN and GGT5 predicted unfavorable outcomes of GC. Enrichment analysis showed that the coexpressed genes were involved in extracellular matrix (ECM)-related processes. GSEA indicated that IGFBP7 was positively related to ECM and inflammation-related pathways. TIMER analysis indicated that the IGFBP7 expression level was strongly correlated with genes related to various infiltrating immune cells in GC, especially with gene markers of tumor associated macrophages (TAMs).Conclusions We demonstrate that increased IGFBP7 expression correlates with poor prognosis and immune cell infiltration in GC. IGFBP7 might be a potential biomarker for the diagnosis and targeted therapy for GC.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yangming Hou ◽  
Yingjuan Xu ◽  
Dequan Wu

AbstractThe infiltration degree of immune and stromal cells has been shown clinically significant in tumor microenvironment (TME). However, the utility of stromal and immune components in Gastric cancer (GC) has not been investigated in detail. In the present study, ESTIMATE and CIBERSORT algorithms were applied to calculate the immune/stromal scores and the proportion of tumor-infiltrating immune cell (TIC) in GC cohort, including 415 cases from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were screened by Cox proportional hazard regression analysis and protein–protein interaction (PPI) network construction. Then ADAMTS12 was regarded as one of the most predictive factors. Further analysis showed that ADAMTS12 expression was significantly higher in tumor samples and correlated with poor prognosis. Gene Set Enrichment Analysis (GSEA) indicated that in high ADAMTS12 expression group gene sets were mainly enriched in cancer and immune-related activities. In the low ADAMTS12 expression group, the genes were enriched in the oxidative phosphorylation pathway. CIBERSORT analysis for the proportion of TICs revealed that ADAMTS12 expression was positively correlated with Macrophages M0/M1/M2 and negatively correlated with T cells follicular helper. Therefore, ADAMTS12 might be a tumor promoter and responsible for TME status and tumor energy metabolic conversion.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jinfeng Zhu ◽  
Chen Luo ◽  
Jiefeng Zhao ◽  
Xiaojian Zhu ◽  
Kang Lin ◽  
...  

Background: Lysyl oxidase (LOX) is a key enzyme for the cross-linking of collagen and elastin in the extracellular matrix. This study evaluated the prognostic role of LOX in gastric cancer (GC) by analyzing the data of The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) dataset.Methods: The Wilcoxon rank-sum test was used to calculate the expression difference of LOX gene in gastric cancer and normal tissues. Western blot and immunohistochemical staining were used to evaluate the expression level of LOX protein in gastric cancer. Kaplan-Meier analysis was used to calculate the survival difference between the high expression group and the low expression group in gastric cancer. The relationship between statistical clinicopathological characteristics and LOX gene expression was analyzed by Wilcoxon or Kruskal-Wallis test and logistic regression. Univariate and multivariate Cox regression analysis was used to find independent risk factors affecting the prognosis of GC patients. Gene set enrichment analysis (GSEA) was used to screen the possible mechanisms of LOX and GC. The CIBERSORT calculation method was used to evaluate the distribution of tumor-infiltrating immune cell (TIC) abundance.Results: LOX is highly expressed in gastric cancer tissues and is significantly related to poor overall survival. Wilcoxon or Kruskal-Wallis test and Logistic regression analysis showed, LOX overexpression is significantly correlated with T-stage progression in gastric cancer. Multivariate Cox regression analysis on TCGA and GEO data found that LOX (all p < 0.05) is an independent factor for poor GC prognosis. GSEA showed that high LOX expression is related to ECM receptor interaction, cancer, Hedgehog, TGF-beta, JAK-STAT, MAPK, Wnt, and mTOR signaling pathways. The expression level of LOX affects the immune activity of the tumor microenvironment in gastric cancer.Conclusion: High expression of LOX is a potential molecular indicator for poor prognosis of gastric cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yi Shi ◽  
Jianhua Ren ◽  
Ze Zhuang ◽  
Wenhui Zhang ◽  
Zhe Wang ◽  
...  

Osteosarcoma is a highly malignant bone cancer which primarily occurs in children and young adults. Increasing evidence indicates that long noncoding RNAs (lncRNAs), which function as competing endogenous RNAs (ceRNAs) that sponge microRNAs (miRNAs) and messenger RNAs (mRNAs), play a pivotal role in the pathogenesis and progression of cancers. The regulatory mechanisms of lncRNA-mediated ceRNAs in osteosarcoma have not been fully elucidated. In this study, we identified differentially expressed lncRNAs, miRNAs, and mRNAs in osteosarcoma based on RNA microarray profiles in the Gene Expression Omnibus (GEO) database. A ceRNA network was constructed utilizing bioinformatic tools. Kaplan-Meier survival analysis showed that lncR-C3orf35 and HMGB1 were associated with poor prognosis of osteosarcoma patients. Furthermore, results of Gene Set Enrichment Analysis (GSEA) suggested that lncR-C3orf35 may be involved in cellular invasion, the Toll-like receptor signaling pathway, and immune cell infiltration in the tumor microenvironment. Further analysis showed that patients with osteosarcoma metastasis expressed higher levels of lncR-C3orf35 and HMGB1 compared to metastasis-free patients. Moreover, the metastasis-free survival rate of the high lncR-C3orf35/HMGB1 expression group was significantly lower than that of the low expression group. The ESTIMATE algorithm was used to calculate the immune score and stromal scores for each sample. High lncR-C3orf35 and HMGB1 levels were correlated with low immune scores. ImmuCellAI analysis revealed that a low proportion of macrophage infiltration was associated with high lncR-C3orf35 and HMGB1 expression. The differential expression of lncR-C3orf35, miR-142-3p, and HMGB1 was further verified by quantitative real-time PCR. This study indicates that lncR-C3orf35 could be considered as a novel potential biomarker and therapeutic target of osteosarcoma, which may contribute to a better understanding of ceRNA regulatory mechanisms.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ang Wang ◽  
Siru Nie ◽  
Zhi Lv ◽  
Jing Wen ◽  
Yuan Yuan

Gastric mucosal immune microenvironment plays an important role in the occurrence and development of diseases such as inflammation and cancer. In the present study, single-sample gene set enrichment analysis (ssGSEA) was used to evaluate the expression of cytokines and the degree of immune cell infiltration in four different gastric mucosa tissues from normal gastric mucosa, simple gastritis, and atrophic gastritis to gastric cancer. Here, we show the immune microenvironments of these four gastric mucosae were significantly different. From inflammation to gastric cancer, most immunoinflammatory cells showed a downward trend such as central memory CD4 T cell. Instead, several cells showed an upward trend such as macrophage. Additionally, we found some chemokines/interleukins were illustrated to be low expressed (or highly expressed) in precancerous stage and highly expressed (or low expressed) in postcancerous stage, which demonstrated an opposite expression characteristic in pre-/postcancerous stage.


2021 ◽  
Author(s):  
Feng Liu ◽  
Zewei Tu ◽  
Junzhe Liu ◽  
Xiaoyan Long ◽  
Bing Xiao ◽  
...  

Abstract Background: A role of DNAJC10 has been reported in several cancers, but its function in glioma is not clear. The purpose of this study was to investigate the prognostic role and the underlying functions of DNAJC10 in glioma.Methods: Reverse transcription and quantitative polymerase chain reaction and western blotting were performed to quantify the relative DNAJC10 mRNA and protein expressions of clinical samples. Wilcoxon rank sum tests were used to compare DNAJC10 expression between or among glioma subgroups with different clinicopathological features. The overall survival (OS) rates of glioma patients with different DNAJC10 expression were compared with the Kaplan-Meier method (two-sided log-rank test). The prognosis-predictive accuracy of the DNAJC10 was evaluated by time-dependent receiver operating characteristic (ROC) curves. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations were conducted using the “clusterProfiler” package. Single-sample gene set enrichment analysis was used to estimate immune cell infiltrations and immune-related function levels. The independent prognostic role of DNAJC10 was determined by univariate and multivariate Cox regression analyses. A DNAJC10-based nomogram model was established using multivariate Cox regression in the R package “rms.” Results: Higher DNAJC10 expression was observed in gliomas. It was upregulated in tumors with higher World Health Organization grade, isocitrate dehydrogenase wild-type status, 1p/19q non-co-deletion, and methylguanine-DNA methyltransferase unmethylated gliomas. Patients with gliomas with higher DNAJC10 expression had poorer prognoses than those with low-DNAJC10 gliomas. The predictive accuracy of 1/3/5-year OS of DNAJC10 was stable and robust using a time-dependent ROC model. Functional enrichment analysis recognized that T cell activation and T cell receptor signaling were enriched in higher DNAJC10 gliomas. Immune cell and stromal cell infiltrations, tumor mutation burden, copy number alteration burden, and immune checkpoint genes were also positively correlated with glioma DNAJC10 expression. A DNAJ10-based nomogram model was established and showed strong prognosis-predictive ability.Conclusion: Higher DNAJC10 expression correlates with poor prognosis of patients with glioma and is a potential and useful prognostic biomarker.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yujia Xiong ◽  
Mingxuan Li ◽  
Jiwei Bai ◽  
Yutao Sheng ◽  
Yazhuo Zhang

Glioma is the most common primary intracranial malignant tumor in adults. Although there have been many efforts on potential targeted therapy of glioma, the patient’s prognosis remains dismal. Methyltransferase Like 7B (METTL7B) has been found to affect the development of a variety of tumors. In this study, we collected RNA-seq data of glioma in CGGA and TCGA, analyzed them separately. Then, Kaplan-Meier survival analysis, univariate and multivariate Cox analysis, and receiver operating characteristic curve (ROC curve) analysis were used to evaluate the effect of METTL7B on prognosis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA) enrichment analyses were used to identify the function or pathway associated with METTL7B. Moreover, the ESTIMATE algorithm, Cibersort algorithm, Spearman correlation analysis, and TIMER database were used to explore the relationship between METTL7B and immunity. Finally, the role of METTL7B was explored in glioma cells. We found that METTL7B is highly expressed in glioma, and high expression of METTL7B in glioma is associated with poor prognosis. In addition, there were significant differences in immune scores and immune cell infiltration between the two groups with different expression levels of METTL7B. Moreover, METTL7B was also correlated with immune checkpoints. Knockdown of METTL7B revealed that METTL7B promoted the progression of glioma cells. The above results indicate that METTL7B affects the prognosis of patients and is related to tumor immunity, speculating that METTL7B may be a new immune-related target for the treatment of glioma.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7091 ◽  
Author(s):  
Bodong Xu ◽  
Zhigang Bai ◽  
Jie Yin ◽  
Zhongtao Zhang

BackgroundThe plasminogen activation system plays a pivotal role in regulating tumorigenesis. In this work, we aim to identify key regulators of plasminogen activation associated with tumorigenesis and explore potential mechanisms in gastric cancer (GC).MethodsGene profiling datasets were extracted from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were screened for and obtained by the GEO2R tool. The Database for Annotation, Visualization and Integrated Discovery was used for GO and KEGG enrichment analysis. Gene set enrichment analysis (GSEA) was performed to verify molecular signatures and pathways among The Cancer Genome Atlas or GEO datasets. Correlations between SERPINE1 and markers of epithelial-to-mesenchymal transition (EMT) were analyzed using the GEPIA database and quantitative real-time PCR (qRT-PCR). Interactive networks of selected genes were built by STRING and Cytoscape software. Finally, selected genes were verified with the Kaplan–Meier (KM) plotter database.ResultsA total of 104 overlapped upregulated and 61 downregulated DEGs were obtained. Multiple GO and KEGG terms associated with the extracellular matrix were enriched among the DEGs. SERPINE1 was identified as the only regulator of angiogenesis and the plasminogen activator system among the DEGs. A high level of SERPINE1 was associated with a poor prognosis in GC. GSEA analysis showed a strong correlation between SERPINE1 and EMT, which was also confirmed with the GEPIA database and qRT-PCR validation. FN1, TIMP1, MMP2, and SPARC were correlated with SERPINE1.The KM plotter database showed that an overexpression of these genes correlated with a shorter survival time in GC patients.ConclusionsIn conclusion, SERPINE1 is a potent biomarker associated with EMT and a poor prognosis in GC. Furthermore, FN1, TIMP1, MMP2, and SPARC are correlated with SERPINE1 and may serve as therapeutic targets in reversing EMT in GC.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12605
Author(s):  
Tongtong Zhang ◽  
Suyang Yu ◽  
Shipeng Zhao

Background Gastric cancer (GC) is the most prevalent malignancy among the digestive system tumors. Increasing evidence has revealed that lower mRNA expression of ANXA9 is associated with a poor prognosis in colorectal cancer. However, the role of ANXA9 in GC remains largely unknown. Material and Methods The Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas databases were used to investigate the expression of ANXA9 in GC, which was then validated in the four Gene Expression Omnibus (GEO) datasets. The diagnostic value of ANXA9 for GC patients was demonstrated using a receiver operating characteristic (ROC) curve. The correlation between ANXA9 expression and clinicopathological parameters was analyzed in The Cancer Genome Atlas (TCGA) and UALCAN databases. The Kaplan-Meier (K-M) survival curve was used to elucidate the relationship between ANXA9 expression and the survival time of GC patients. We then performed a gene set enrichment analysis (GSEA) to explore the biological functions of ANXA9. The relationship of ANXA9 expression and cancer immune infiltrates was analyzed using the Tumor Immune Estimation Resource (TIMER). In addition, the potential mechanism of ANXA9 in GC was investigated by analyzing its related genes. Results ANXA9 was significantly up-regulated in GC tissues and showed obvious diagnostic value. The expression of ANXA9 was related to the age, gender, grade, TP53 mutation, and histological subtype of GC patients. We also found that ANXA9 expression was associated with immune-related biological function. ANXA9 expression was also correlated with the infiltration level of CD8+ T cells, neutrophils, and dendritic cells in GC. Additionally, copy number variation (VNV) of ANXA9 occurred in GC patients. Function enrichment analyses revealed that ANXA9 plays a role in the GC progression by interacting with its related genes. Conclusions Our results provide strong evidence of ANXA9 expression as a prognostic indicator related to immune responses in GC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingyi Chen ◽  
Yuxuan Song ◽  
Mei Li ◽  
Yu Zhang ◽  
Tingru Lin ◽  
...  

Abstract Background Competing endogenous RNA (ceRNA) represents a class of RNAs (e.g., long noncoding RNAs [lncRNAs]) with microRNA (miRNA) binding sites, which can competitively bind miRNA and inhibit its regulation of target genes. Increasing evidence has underscored the involvement of dysregulated ceRNA networks in the occurrence and progression of colorectal cancer (CRC). The purpose of this study was to construct a ceRNA network related to the prognosis of CRC and further explore the potential mechanisms that affect this prognosis. Methods RNA-Seq and miRNA-Seq data from The Cancer Genome Atlas (TCGA) were used to identify differentially expressed lncRNAs (DElncRNAs), microRNAs (DEmiRNAs), and mRNAs (DEmRNAs), and a prognosis-related ceRNA network was constructed based on DElncRNA survival analysis. Subsequently, pathway enrichment, Pearson correlation, and Gene Set Enrichment Analysis (GSEA) were performed to determine the function of the genes in the ceRNA network. Gene Expression Profiling Interactive Analysis (GEPIA) and immunohistochemistry (IHC) were also used to validate differential gene expression. Finally, the correlation between lncRNA and immune cell infiltration in the tumor microenvironment was evaluated based on the CIBERSORT algorithm. Results A prognostic ceRNA network was constructed with eleven key survival-related DElncRNAs (MIR4435-2HG, NKILA, AFAP1-AS1, ELFN1-AS1, AC005520.2, AC245884.8, AL354836.1, AL355987.4, AL591845.1, LINC02038, and AC104823.1), 54 DEmiRNAs, and 308 DEmRNAs. The MIR4435-2HG- and ELFN1-AS1-associated ceRNA subnetworks affected and regulated the expression of the COL5A2, LOX, OSBPL3, PLAU, VCAN, SRM, and E2F1 target genes and were found to be related to prognosis and tumor-infiltrating immune cell types. Conclusions MIR4435-2HG and ELFN1-AS1 are associated with prognosis and tumor-infiltrating immune cell types and could represent potential prognostic biomarkers or therapeutic targets in colorectal carcinoma.


2021 ◽  
pp. 1-17
Author(s):  
Qiaoyun Zhao ◽  
Jun Xie ◽  
Jinliang Xie ◽  
Rulin Zhao ◽  
Conghua Song ◽  
...  

BACKGROUND: Gastric cancer (GC) is one of the most deadliest tumours worldwide, and its prognosis remains poor. OBJECTIVE: This study aims to identify and validate hub genes associated with the progression and prognosis of GC by constructing a weighted correlation network. METHODS: The gene co-expression network was constructed by the WGCNA package based on GC samples and clinical data from the TCGA database. The module of interest that was highly related to clinical traits, including stage, grade and overall survival (OS), was identified. GO and KEGG pathway enrichment analyses were performed using the clusterprofiler package in R. Cytoscape software was used to identify the 10 hub genes. Differential expression and survival analyses were performed on GEPIA web resources and verified by four GEO datasets and our clinical gastric specimens. The receiver operating characteristic (ROC) curves of hub genes were plotted using the pROC package in R. The potential pathogenic mechanisms of hub genes were analysed using gene set enrichment analysis (GSEA) software. RESULTS: A total of ten modules were detected, and the magenta module was identified as highly related to OS, stage and grade. Enrichment analysis of magenta module indicated that ECM-receptor interaction, focal adhesion, PI3K-Akt pathway, proteoglycans in cancer were significantly enriched. The PPI network identified ten hub genes, namely COL1A1, COL1A2, FN1, POSTN, THBS2, COL11A1, SPP1, MMP13, COMP, and SERPINE1. Three hub genes (FN1, COL1A1 and SERPINE1) were finally identified to be associated with carcinogenicity and poor prognosis of GC, and all were independent risk factors for GC. The area under the curve (AUC) values of FN1, COL1A1 and SERPINE1 for the prediction of GC were 0.702, 0.917 and 0.812, respectively. GSEA showed that three hub genes share 15 common upregulated biological pathways, including hypoxia, epithelial mesenchymal transition, angiogenesis, and apoptosis. CONCLUSION: We identified FN1, COL1A1 and SERPINE1 as being associated with the progression and poor prognosis of GC.


Sign in / Sign up

Export Citation Format

Share Document