scholarly journals Three Term Weighted Type Fractional Fourier Transform Based Generalized Hybrid Carrier and Its Application into PAPR Suppression

2021 ◽  
Author(s):  
Yong Li ◽  
Zhiqun Song ◽  
Teng Sun ◽  
Bin Wang

To suppress the peak to average power ratio (PAPR) of wireless communication based upon multi-carrier system. We, in this paper, proposed the three term weighted type fractional Fourier transform (3-WFRFT) based generalized hybrid carrier (GHC) system. We first provide the definition of 3-WFRFT. Moreover, some useful properties of 3-WFRFT have been presented, in this paper, which will helpful to comprehend the novel 3-WFRFT transform. Furthermore, we take PAPR of the proposed algorithm, in comparison with orthogonal frequency division multiplexing (OFDM) system and single carrier modulation (SC) system under typical complementary cumulative density function (CCDF) level. It would be demonstrated that, from some numerical simulations, the proposed 3-WFRFT based GHC performs better than OFDM system and will be useful to reduce the PAPR level.

2017 ◽  
Vol 1 (2) ◽  
pp. 18
Author(s):  
N. M. A. E. D. Wirastuti ◽  
N. Pramaita ◽  
I M. A. Suyadnya ◽  
D. C. Khrisne

This paper investigates clipping and filtering techniques in reducing peak average power ratio (PAPR) of Orthogonal Frequency Division Multiplexing (OFDM) system. The concept of OFDM is to split a high speed serial data into parallel data at a lower speed, then the parallel data carried by mutually orthogonal subcarriers. The high of PAPR is one of disadvantages of OFDM system. The high PAPR can damages the form of OFDM and reduces its performance. The purpose of this study is to reduce PAPR using simulation. OFDM was simulated with and without clipping filtering then compared.  The methods used to reduce PAPR was clipping and filtering technique. Clipping and filtering technique operates by clipping the output of inverse Fourier transform that exceed the threshold. Graphics PAPR vs. CCDF was used to evaluate the performance of OFDM systems. PAPR for OFDM system using Fourier transform when CCDF = 10-3 is 11,2 dB, with classical clipping PAPR was 4,1 dB and PAPR 4,6 dB when with deep clipping.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Fanggang Wang ◽  
Xiaodong Wang

We consider application of the discrete Fourier transform-spread orthogonal frequency-division multiplexing (DFT-spread OFDM) technique to high-speed fiber optic communications. The DFT-spread OFDM is a form of single-carrier technique that possesses almost all advantages of the multicarrier OFDM technique (such as high spectral efficiency, flexible bandwidth allocation, low sampling rate, and low-complexity equalization). In particular, we consider the optical DFT-spread OFDM system with polarization division multiplexing (PDM) that employs a tone-by-tone linear minimum mean square error (MMSE) equalizer. We show that such a system offers a much lower peak-to-average power ratio (PAPR) performance as well as better bit error rate (BER) performance compared with the optical OFDM system that employs amplitude clipping.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Atul Kumar ◽  
Maurizio Magarini ◽  
Hem Dutt Joshi ◽  
Rajiv Saxena

We present the exact symbol error rate (SER) expression for quadrature phase shift keying (QPSK) modulation in frequency selective Rayleigh fading channel for discrete fractional Fourier transform- (DFrFT-) based orthogonal frequency division multiplexing (OFDM) system in the presence of carrier frequency offset (CFO). The theoretical result is confirmed by means of Monte Carlo simulations. It is shown that the performance of the proposed system, at different values of the DFrFT angle parameter “α,” is better than that of OFDM based on discrete Fourier transform.


2021 ◽  
Vol 5 (4) ◽  
pp. 205
Author(s):  
Tieyu Zhao ◽  
Yingying Chi

The definition of the discrete fractional Fourier transform (DFRFT) varies, and the multiweighted-type fractional Fourier transform (M-WFRFT) is its extended definition. It is not easy to prove its unitarity. We use the weighted-type fractional Fourier transform, fractional-order matrix and eigendecomposition-type fractional Fourier transform as basic functions to prove and discuss the unitarity. Thanks to the growing body of research, we found that the effective weighting term of the M-WFRFT is only four terms, none of which are extended to M terms, as described in the definition. Furthermore, the program code is analyzed, and the result shows that the previous work (Digit Signal Process 2020: 104: 18) based on MATLAB for unitary verification is inaccurate.


In this paper, Discrete Wavelet Transform (DWT) Orthogonal Frequency Division Multiplexing (OFDM) system is compared with Discrete Cosine Transform (DCT) and Discrete Fourier Transform (DFT) OFDM systems. The channel noise is modelled with A white Gaussian Model (AWGN), the fading is the impairment in the channel and modelled by Rayleigh fading which is frequency selective fading channel and flat fading channel. The comparisons of Peak to Average Power Ratio (PAPR) and Bit Error Rate (BER) are made using modulation techniques such as Differential Amplitude and Phase Modulation (DAPM), Quadrature Amplitude Modulation (QAM) and Pulse Amplitude Modulation (PAM). Simulation results shows that PAPR is 4.497 dB for DWT-DAPM combination, 4.684 dB for DWT-QAM combination and 6.211 dB for DWT- PAM combination at 10-3 Complementary Cumulative Distributive Function (CCDF).The performance Analysis with the combination of DFT, DCT with DAPM, QAM and PAM are also compared. The BER is 0.01816, 0.01806 at 20 dB SNR in frequency selective channel, flat fading channel for DWT-DAPM and for DWT- QAM, AWGN channel BER is 0.01765 at 20dB SNR.


Author(s):  
Heba Abdul-Jaleel Al-Asady ◽  
Hassan Falah Fakhruldeen ◽  
Mustafa Qahtan Alsudani

<p>Orthogonal frequency division multiplexing (OFDM) is a transmission system that uses multiple orthogonal carriers that are sent out at the same time. OFDM is a technique for mobile and wireless communication that has high-efficient frequency utilization, high data-rate transmission, simple and efficient implementation using the fast Fourier transform (FFT) and the inverse fast Fourier transform (IFFT), and reduces inter symbol interference (ISI) by inserting cyclic prefix (CP). One of the most important approaches in an OFDM system is channel estimation. In this paper, the orthogonal frequency division multiplexing system with the Rayleigh channel module is analyzed for different areas. The proposed approach used large numbers of subcarriers to transmit the signals over 64-QAM modulation with pilot add channel estimation. The accuracy of the OFDM system is shown in the measuring of the relationships of peak power to the noise ratio and bit error rate.</p>


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Saruti Gupta ◽  
Ashish Goel

Abstract The main drawback in the performance of the Orthogonal Frequency Division Multiplexing (OFDM) system is the higher Peak-to-Average Power Ratio (PAPR) of the OFDM signals at the transmitter side. Companding is a well-known technique useful for reducing PAPR in the OFDM signal. This paper proposes a new nonlinear companding scheme that transforms the magnitude of Rayleigh distributed OFDM signal of specific degree into trapezoidal distribution. Additional design parameter is used in the proposed companding scheme to make the companding function more flexible. In the designed OFDM system the companding function has more degree of freedom which improves the PAPR and bit error rate (BER) parameters of the designed system. It has been demonstrated that the designed companding scheme provides more flexibility to accomplish an optimum trade-off between the performance parameters PAPR and BER of the designed OFDM system.


Sign in / Sign up

Export Citation Format

Share Document