Mobile robots in industrial environments

1999 ◽  
Vol 18 (3-4) ◽  
pp. 275-285
Author(s):  
J. Batlle ◽  
P. Ridao

It is known that mobile robot applications have a preponderant role in industrial and social environments and, more specifically, helping human beings in carrying out difficult tasks in hostile environments. From teleoperated systems to autonomous robots, there is a wide variety of possibilities requiring a high technological level. Many concepts such as perception, manipulator design, grasping, dynamic control, etc. are involved in the field of industrial mobile robots. In this context, human–robot interaction is one of the most widely studied topics over the last few years together with computer vision techniques and virtual reality tools. In all these technical fields, a common goal is pursued, i.e., robots to come closer to human skills. In this paper, first some important research projects and contributions on mobile robots in industrial environments are overviewed. Second, a proposal for classification of mobile robot architectures is described. Third, results achieved in two specific application areas of mobile robotics are reported. The first is related to the tele-operation of a mobile robot called ROGER by means of a TCP/IP network. The control system of the robot is built up as a distributed system, using distributed object oriented software, CORBA compatible. The second is related to the teleoperation of an underwater robot called GARBI. (Research project co-ordinated with the Polytechnic University of Catalonia (Prof. Josep Amat) and financed by the Spanish Government.) The utility of this kind of prototype is demonstrated in tasks such as welding applications in underwater environments, inspection of dammed walls, etc. Finally, an industrial project involving the use of intelligent autonomous robots is presented showing how the experience gained in robotics has been applied.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1571
Author(s):  
Andrea Bonci ◽  
Pangcheng David Cen Cheng ◽  
Marina Indri ◽  
Giacomo Nabissi ◽  
Fiorella Sibona

Perception capability assumes significant importance for human–robot interaction. The forthcoming industrial environments will require a high level of automation to be flexible and adaptive enough to comply with the increasingly faster and low-cost market demands. Autonomous and collaborative robots able to adapt to varying and dynamic conditions of the environment, including the presence of human beings, will have an ever-greater role in this context. However, if the robot is not aware of the human position and intention, a shared workspace between robots and humans may decrease productivity and lead to human safety issues. This paper presents a survey on sensory equipment useful for human detection and action recognition in industrial environments. An overview of different sensors and perception techniques is presented. Various types of robotic systems commonly used in industry, such as fixed-base manipulators, collaborative robots, mobile robots and mobile manipulators, are considered, analyzing the most useful sensors and methods to perceive and react to the presence of human operators in industrial cooperative and collaborative applications. The paper also introduces two proofs of concept, developed by the authors for future collaborative robotic applications that benefit from enhanced capabilities of human perception and interaction. The first one concerns fixed-base collaborative robots, and proposes a solution for human safety in tasks requiring human collision avoidance or moving obstacles detection. The second one proposes a collaborative behavior implementable upon autonomous mobile robots, pursuing assigned tasks within an industrial space shared with human operators.


Author(s):  
Alauddin Yousif Al-Omary

In this chapter, the benefit of equipping the robot with odor sensors is investigated. The chapter addresses the types of tasks the mobile robots can accomplish with the help of olfactory sensing capabilities, the technical challenges in mobile robot olfaction, the status of mobile robot olfaction. The chapter also addresses simple and complex electronic olfaction sensors used in mobile robotics, the challenge of using chemical sensors, the use of many types of algorithms for robot olfaction, and the future research directions in the field of mobile robot olfaction.


Robotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 109
Author(s):  
Uwe Jahn ◽  
Daniel Heß ◽  
Merlin Stampa ◽  
Andreas Sutorma ◽  
Christof Röhrig ◽  
...  

Mobile robotics is a widespread field of research, whose differentiation from general robotics is often based only on the ability to move. However, mobile robots need unique capabilities, such as the function of navigation. Also, there are limiting factors, such as the typically limited energy, which must be considered when developing a mobile robot. This article deals with the definition of an archetypal robot, which is represented in the form of a taxonomy. Types and fields of application are defined. A systematic literature review is carried out for the definition of typical capabilities and implementations, where reference systems, textbooks, and literature references are considered.


2010 ◽  
Vol 166-167 ◽  
pp. 309-314 ◽  
Author(s):  
Iuliu Negrean ◽  
Claudiu Schonstein ◽  
Kalman Kacso ◽  
Calin Negrean ◽  
Adina Duca

In this paper the dynamics equations for a mobile robot, named PatrolBot, will be developed, using new concepts in advanced mechanics, based on important scientific researches of the main author, concerning the kinetic energy. In keeping the fact that the mathematical models of the mobile platforms are different besides the other robots types, due to nonholonomic constraints, these dynamic control functions, will be computed, according to these restrictions for robot motion.


Author(s):  
Ulrich Nehmzow

Mobile robotics can be a useful tool for the life scientist in that they combine perception, computation and action, and are therefore comparable to living beings. They have, however, the distinct advantage that their behaviour can be manipulated by changing their programs and/or their hardware. In this chapter, quantitative measurements of mobile robot behaviour and a theory of robot-environment interaction that can easily be applied to the analysis of behaviour of mobile robots and animals is presented. Interestingly such an analysis is based on chaos theory.


2015 ◽  
Vol 27 (4) ◽  
pp. 392-400 ◽  
Author(s):  
Keita Kurashiki ◽  
◽  
Mareus Aguilar ◽  
Sakon Soontornvanichkit

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270004/09.jpg"" width=""300"" /> Mobile robot with a stereo camera</div> Autonomous mobile robots has been an active research recently. In Japan, the Tsukuba Challenge is held annually since 2007 in order to realize autonomous mobile robots that coexist with human beings safely in society. Through technological incentives of such effort, laser range finder (LRF) based navigation has rapidly improved. A technical issue of these techniques is the reduction of the prior information because most of them require precise 3D model of the environment, that is poor in both maintainability and scalability. On the other hand, in spite of intensive studies on vision based navigation using cameras, no robot in the Challenge could achieve full camera navigation. In this paper, an image based control law to follow the road boundary is proposed. This method is a part of the topological navigation to reduce prior information and enhance scalability of the map. As the controller is designed based on the interaction model of the robot motion and image feature in the front image, the method is robust to the camera calibration error. The proposed controller is tested through several simulations and indoor/outdoor experiments to verify its performance and robustness. Finally, our results in Tsukuba Challenge 2014 using the proposed controller is presented. </span>


2015 ◽  
Vol 27 (4) ◽  
pp. 318-326 ◽  
Author(s):  
Shin'ichi Yuta ◽  
◽  

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270004/01.jpg"" width=""300"" /> Autonomous mobile robot in RWRC 2014</div> The Tsukuba Challenge, an open experiment for autonomous mobile robotics researchers, lets mobile robots travel in a real – and populated – city environment. Following the challenge in 2013, the mobile robots must navigate autonomously to their destination while, as the task of Tsukuba Challenge 2014, looking for and finding specific persons sitting in the environment. Total 48 teams (54 robots) seeking success in this complex challenge. </span>


2020 ◽  
Vol 110 (09) ◽  
pp. 619-623
Author(s):  
Julia Berg ◽  
Benedikt Leichtmann ◽  
Albrecht Lottermoser ◽  
Verena Nitsch

Im Rahmen des Projekts „FORobotics“ wurden mobile Robotersysteme in industriellen Unternehmen eingesetzt. Um den Einsatz strukturiert zu evaluieren, wurde eine Methode zur Evaluation entwickelt. Der Beitrag beschreibt den Einsatz des mobilen Roboters bei der Mey Maschinenbau Prien GmbH & Co. KG und die Evaluation des Einsatzes mithilfe der entwickelten Methode. &nbsp; The project FORobotics adressed the application of mobile robots in industrial companies. In order to evaluate structurally the application, an evaluation method was developed. This article describes the application of the mobile robot at Mey Maschinenbau Prien GmbH & Co. KG and the evaluation using the developed method.


2002 ◽  
Vol 14 (4) ◽  
pp. 323-323
Author(s):  
Takashi Tsubouchi ◽  
◽  
Keiji Nagatani ◽  

Since the dawning of the Robotics age, mobile robots have been important objectives of research and development. Working from such aspects as locomotion mechanisms, path and motion planning algorithms, navigation, map building and localization, and system architecture, researchers are working long and hard. Despite the fact that mobile robotics has a shorter history than conventional mechanical engineering, it has already accumulated a major, innovative, and rich body of R&D work. Rapid progress in modern scientific technology had advanced to where down-sized low-cost electronic devices, especially highperformance computers, can now be built into such mobile robots. Recent trends in ever higher performance and increased downsizing have enabled those working in the field of mobile robotics to make their models increasingly intelligent, versatile, and dexterous. The down-sized computer systems implemented in mobile robots must provide high-speed calculation for complicated motion planning, real-time image processing in image recognition, and sufficient memory for storing the huge amounts of data required for environment mapping. Given the swift progress in electronic devices, new trends are now emerging in mobile robotics. This special issue on ""Modern Trends in Mobile Robotics"" provides a diverse collection of distinguished papers on modern mobile robotics research. In the area of locomotion mechanisms, Huang et al. provide an informative paper on control of a 6-legged walking robot and Fujiwara et al. contribute progressive work on the development of a practical omnidirectional cart. Given the importance of vision systems enabling robots to survey their environments, Doi et al., Tang et al., and Shimizu present papers on cutting-edge vision-based navigation. On the crucial subject of how to equip robots with intelligence, Hashimoto et al. present the latest on sensor fault detection in dead-reckoning, Miura et al. detail the probabilistic modeling of obstacle motion during mobile robot navigation, Hada et al. treat long-term mobile robot activity, and Lee et al. explore mobile robot control in intelligent space. As guest editors, we are sure readers will find these articles both informative and interesting concerning current issues and new perspectives in modern trends in mobile robotics.


2015 ◽  
Vol 27 (4) ◽  
pp. 317-317 ◽  
Author(s):  
Yoshihiro Takita ◽  
Shin’ichi Yuta ◽  
Takashi Tsubouchi ◽  
Koichi Ozaki

The first Tsukuba Challenge started in 2007 as a technological challenge for autonomous mobile robots moving around on city walkways. A task was then added involving the search for certain persons. In these and other ways, the challenge provides a test field for developing positive relationships between mobile robots and human beings. To make progress an autonomous robotic research, this special issue details and clarifies technological problems and solutions found by participants in the challenge. We sincerely thank the authors and reviewers for this chance to work with them in these important areas.


Sign in / Sign up

Export Citation Format

Share Document