A citation recommendation method based on context correlation

2021 ◽  
Vol 25 (1) ◽  
pp. 225-243
Author(s):  
Weidong Zhao ◽  
Zhaoxin Yu ◽  
Ran Wu

Researchers need to formulate their achievements as research papers. Representative references are essential to high-quality papers. Academic citation recommendation refers to providing the recommendation of citations for the author of papers when they write. With the help of citation recommendation, researchers can improve the efficiency of writing academic papers and reduce the omission of important related literature. To achieve this goal, some methods were proposed. Many of them used citation networks to learn the representation of papers and chose references, they tended to ignore the content properties of papers. There are also some methods used partial properties to recommend citation. But their performance can be further improved. In this paper, we propose a citation recommendation method based on context correlation. We use two neural network models to learn the representations of papers and their references, then calculate the context similarity of them. Besides, we also introduce the publishing time and authority of papers, two key properties of papers for citation evaluation. In the experiment section, we compare our method with other methods and evaluate the performance of different properties choice in our method, it shows that our method outperforms some baselines and the combination of the dimensions including time, authority and context performs better.

2021 ◽  
Author(s):  
V.Y. Ilichev ◽  
I.V. Chukhraev

The article is devoted to the consideration of one of the areas of application of modern and promising computer technology – machine learning. This direction is based on the creation of models consisting of neural networks and their deep learning. At present, there is a need to generate new, not yet existing, images of objects of different types. Most often, text files or images act as such objects. To achieve a high quality of results, a generation method based on the adversarial work of two neural networks (generator and discriminator) was once worked out. This class of neural network models is distinguished by the complexity of topography, since it is necessary to correctly organize the structure of neural layers in order to achieve maximum accuracy and minimal error. The described program is created using the Python language and special libraries that extend the set of commands for performing additional functions: working with neural networks Keras (main library), integrating with the operating system Os, outputting graphs Matplotlib, working with data arrays Numpy and others. A description is given of the type and features of each neural layer, as well as the use of library connection functions, input of initial data, compilation and training of the obtained model. Next, the implementation of the procedure for outputting the results of evaluating the errors of the generator and discriminator and the accuracy achieved by the model depending on the number of cycles (eras) of its training is considered. Based on the results of the work, conclusions were drawn and recommendations were made for the use and development of the considered methodology for creating and training generative and adversarial neural networks. Studies have demonstrated the procedure for operating with comparatively simple and accessible, but effective means of a universal Python language with the Keras library to create and teach a complex neural network model. In fact, it has been proved that the use of this method allows to achieve high-quality results of machine learning, previously achievable only when using special software systems for working with neural networks.


Author(s):  
Angeliki Kavga ◽  
Vassilis Kappatos

A high quality greenhouse control demands continuous measurements of indoor and outdoor greenhouse conditions. In this work, neural network models were used for reducing the cost and the time of temperature measurements, estimating two of the most important parameters in the operation of the greenhouse, namely the inside air temperature and the cover temperature of greenhouse. An extensive experimental investigation was carried out in an infrared heated greenhouse, using the experimental data to train and validate the neural network models. The modelling results show that the estimated temperatures have been in good agreement with the experimental data with accuracy ranging from 95.64% to 97.67%.


2020 ◽  
Vol 5 ◽  
pp. 140-147 ◽  
Author(s):  
T.N. Aleksandrova ◽  
◽  
E.K. Ushakov ◽  
A.V. Orlova ◽  
◽  
...  

The neural network models series used in the development of an aggregated digital twin of equipment as a cyber-physical system are presented. The twins of machining accuracy, chip formation and tool wear are examined in detail. On their basis, systems for stabilization of the chip formation process during cutting and diagnose of the cutting too wear are developed. Keywords cyberphysical system; neural network model of equipment; big data, digital twin of the chip formation; digital twin of the tool wear; digital twin of nanostructured coating choice


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4242
Author(s):  
Fausto Valencia ◽  
Hugo Arcos ◽  
Franklin Quilumba

The purpose of this research is the evaluation of artificial neural network models in the prediction of stresses in a 400 MVA power transformer winding conductor caused by the circulation of fault currents. The models were compared considering the training, validation, and test data errors’ behavior. Different combinations of hyperparameters were analyzed based on the variation of architectures, optimizers, and activation functions. The data for the process was created from finite element simulations performed in the FEMM software. The design of the Artificial Neural Network was performed using the Keras framework. As a result, a model with one hidden layer was the best suited architecture for the problem at hand, with the optimizer Adam and the activation function ReLU. The final Artificial Neural Network model predictions were compared with the Finite Element Method results, showing good agreement but with a much shorter solution time.


2021 ◽  
Vol 11 (3) ◽  
pp. 908
Author(s):  
Jie Zeng ◽  
Panagiotis G. Asteris ◽  
Anna P. Mamou ◽  
Ahmed Salih Mohammed ◽  
Emmanuil A. Golias ◽  
...  

Buried pipes are extensively used for oil transportation from offshore platforms. Under unfavorable loading combinations, the pipe’s uplift resistance may be exceeded, which may result in excessive deformations and significant disruptions. This paper presents findings from a series of small-scale tests performed on pipes buried in geogrid-reinforced sands, with the measured peak uplift resistance being used to calibrate advanced numerical models employing neural networks. Multilayer perceptron (MLP) and Radial Basis Function (RBF) primary structure types have been used to train two neural network models, which were then further developed using bagging and boosting ensemble techniques. Correlation coefficients in excess of 0.954 between the measured and predicted peak uplift resistance have been achieved. The results show that the design of pipelines can be significantly improved using the proposed novel, reliable and robust soft computing models.


Sign in / Sign up

Export Citation Format

Share Document